Доклад о законе всемирного тяготения

Журнал «Квант»

Содержание

Ньютон был первым, кто сначала догадался, а потом и строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила тяготения, действующая между любыми телами Вселенной. Вот ход его рассуждений, приведенных в главном труде Ньютона «Математические начала натуральной философии»:

Итак, по мнению Ньютона, движение Луны вокруг Земли или планет вокруг Солнца – это тоже свободное падение, но только падение, которое длится, не прекращаясь, миллиарды лет. Причиной такого «падения» (идет ли речь действительно о падении обычного камня на Землю или о движении планет по их орбитам) является сила всемирного тяготения. От чего же эта сила зависит?

Зависимость силы тяготения от массы тел

Галилей доказал, что при свободном падении Земля сообщает всем телам в данном месте одно и то же ускорение независимо от их массы. Но ускорение по второму закону Ньютона обратно пропорционально массе\[a = \frac \]. Как же объяснить, что ускорение, сообщаемое телу силой притяжения Земли, одинаково для всех тел? Это возможно лишь в том случае, если сила притяжения к Земле прямо пропорциональна массе тела. В этом случае увеличение массы т, например, вдвое приведет к увеличению модуля силы F тоже вдвое, а ускорение, которое равно \(a = \frac \), останется неизменным. Обобщая этот вывод для сил тяготения между любыми телами, заключаем, что сила всемирного тяготения прямо пропорциональна массе тела, на которое эта сила действует.

Но во взаимном притяжении участвуют по меньшей мере два тела. На каждое из них, согласно третьему закону Ньютона, действуют одинаковые по модулю силы тяготения. Поэтому каждая из этих сил должна быть пропорциональна как массе одного тела, так и массе другого тела. Поэтому сила всемирного тяготения между двумя телами прямо пропорциональна произведению их масс:

Зависимость силы тяготения от расстояния между телами

Чтобы выяснить, как влияет расстояние между телами на силу их вза-имного притяжения, нужно было бы узнать, каково ускорение тел, удаленных от Земли на достаточно большие расстояния. Однако наблюдать и изучать свободное падение тела с высоты в тысячи километров над Землей трудно. Но сама природа пришла здесь на помощь и дала возможность определить ускорение тела, движущегося по окружности вокруг Земли и обладающего поэтому центростремительным ускорением, вызванным, разумеется, той же силой притяжения к Земле. Таким телом является естественный спутник Земли – Луна. Если бы сила притяжения между Землей и Луной не зависела от расстояния между ними, то центростремительное ускорение Луны было бы таким же, как ускорение тела, свободно падающего близ поверхности Земли. В действительности же центростремительное ускорение Луны равно 0,0027 м/с 2 .

Найденное значение ускорения меньше ускорения свободного падения тел у поверхности Земли (9,8 м/с 2 ) приблизительно в 3600 = 60 2 раз.

Таким образом, увеличение расстояния между телом и Землей в 60 раз привело к уменьшению ускорения, сообщаемого земным притяжением, а следовательно, и самой силы притяжения в 60 2 раз.

В 1667 г. Ньютон окончательно сформулировал закон всемирного тяготения:

Коэффициент пропорциональности G называется гравитационной постоянной.

Закон всемирного тяготения справедлив только для таких тел, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. Иначе говоря, он справедлив только для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 2). Подобного рода силы называются центральными.

Для нахождения силы тяготения, действующей на данное тело со сто-роны другого, в случае, когда размерами тел пренебречь нельзя, поступают следующим образом. Оба тела мысленно разделяют на столь малые элементы, чтобы каждый из них можно было считать точечным. Складывая силы тяготения, действующие на каждый элемент данного тела со стороны всех элементов другого тела, получают силу, действующую на этот элемент (рис. 3). Проделав такую операцию для каждого элемента данного тела и сложив полученные силы, находят полную силу тяготения, действующую на это тело. Задача эта сложная.

Есть, однако, один практически важный случай, когда формула (1) применима к протяженным телам. Можно доказать, что сферические тела, плотность которых зависит только от расстояний до их центров, при расстояниях между ними, больших суммы их радиусов, притягиваются с силами, модули которых определяются формулой (1). В этом случае R – это расстояние между центрами шаров.

гравитационная постоянная численно равна модулю силы тяготения, действующей на тело массой 1 кг со стороны другого тела такой же массы при расстоянии между телами, равном 1 м.

Значение гравитационной постоянной G может быть найдено только опытным путем. Для этого надо измерить модуль силы тяготения F, действующей на тело массой m1 со стороны тела массой m2 при известном расстоянии R между телами.

Первые измерения гравитационной постоянной были осуществлены в середине XVIII в. Оценить, правда весьма грубо, значение G в то время удалось в результате рассмотрения притяжения маятника к горе, масса которой была определена геологическими методами.

Точные измерения гравитационной постоянной впервые были проведены в 1798 г. английским физиком Г. Кавендишем с помощью прибора, называемого крутильными весами. Схематично крутильные весы показаны на рисунке 4.

Кавендиш закрепил два маленьких свинцовых шара (диаметром 5 см и массой m1 = 775 г каждый) на противоположных концах двухметрового стержня. Стержень был подвешен на тонкой проволоке. Для этой проволоки предварительно определялись силы упругости, возникающие в ней при закручивании на различные углы. Два больших свинцовых шара (диаметром 20 см и массой m2 = 49,5 кг) можно было близко подводить к маленьким шарам. Силы притяжения со стороны больших шаров заставляли маленькие шары перемещаться к ним, при этом натянутая проволока немного закручивалась. Степень закручивания была мерой силы, действующей между шарами. Угол закручивания проволоки (или поворота стержня с малыми шарами) оказался столь малым, что его пришлось измерять с помощью оптической трубы. Результат, полученный Кавендишем, только на 1% отличается от значения гравитационной постоянной, принятого сегодня:

G ≈ 6,67∙10 -11 (Н∙м 2 )/кг 2

Таким же образом 14 марта 1930 г. была открыта планета Плутон. Оба открытия, как говорят, были сделаны «на кончике пера».

Силы всемирного тяготения – самые универсальные из всех сил природы. Они действуют между любыми телами, обладающими массой, а массу имеют все тела. Для сил тяготения не существует никаких преград. Они действуют сквозь любые тела.

www.physbook.ru

Закон всемирного тяготения Ньютона

Закон всемирного тяготения заключается в следующем.

Пусть в точках 1, 2 инерциальной системы отсчета нахо­дятся две точечные частицы с массами m1, m2 соответствен­но. Утверждается, что со стороны второй частицы на пер­вую действует сила 12, равная

Поскольку частицы равноправны, на вторую частицу со стороны первой действует сила 21, выражение для кото­рой получим из приведенного выше, поменяв местами ин­дексы 1 и 2. При этом сразу обнаружится, что 12 + 21 = 0, т. е. эти силы равны по величине и противоположны по направлению, как и должно быть согласно третьему закону Ньютона. Что означает приведенная формула? Прочтем ее. Вектор 12 = 2 1 — это вектор, соединяющий первую частицу со второй. Его модуль r12 = |r2 r1| есть расстоя­ние между двумя частицами. Вектор 12 / r12 единичный вектор (вектор с модулем, равным 1) в направлении от пер­вой частицы ко второй. Таким образом, вектор 12 расположен на линии, соединяющей обе частицы, и напра­влен в сторону второй частицы, т. е. частица массой m1 притягивается к частице с массой m2. Величина этой силы при­тяжения (ее модуль) равна

Идея о том, что тяготение убывает обратно пропор­ционально квадрату рас­стояния, «носилась в воз­духе». Основная заслуга Ньютона состоит в том, что он смог включить ее в математическую теорию и доказать на ее основании, что падение тел у поверх­ности Земли и «падение Луны» в ее орбитальном движении вызваны одной и той же причиной.

Таким образом, сила пропорциональна массам частиц и об­ратно пропорциональна квадрату расстояния между ними. Ясно, что F21 = F12. Это и есть закон всемирного тяготения. Материал с сайта http://worldofschool.ru

Но закон всемирного тяготения сформулирован для двух материальных точек, что также отражено в формуле. Положение протяженного тела нельзя задать радиус-вектором — не известно, в какую точ­ку его проводить. Точно так же лишено смысла понятие расстояния между двумя протяженными телами. Но точеч­ных объектов, строго говоря, не существует. Закон прибли­женно справедлив для любых двух тел при условии, что их размеры много меньше расстояния между ними (в этом случае не важно, между какими точками тел измерять рас­стояние). Если же это условие не выполняется, закон всемирного тяготения, тем не менее, позволяет найти силу притяжения, хотя математиче­ски это уже не простая проблема. Нужно разбить тела на малые элементы, найти силу взаимодействия каждого эле­мента одного тела с каждым элементом другого и просум­мировать эти силы. Таким образом, Ньютону удалось дока­зать, что сила притяжения двух сферически-симметричных тел будет такой же, как и сила притяжения двух материаль­ных точек с массами этих тел, помещенных в их центры.

Обратите внимание на то, сколько слов приходится потратить на обсуждение закона, все содержание которого представляется одной простой формулой. Для понимания физичес­ких теорий необходимо уметь читать формулы.

worldofschool.ru

Доклад на тему:Закон всемирного тяготения

Успейте воспользоваться скидками до 50% на курсы «Инфоурок»

Школа п.Третий решающий

по дисциплине: «Физика»

на тему:« Закон всемирного тяготения . »

Закон всемирного тяготения

Этот главный для астрономии закон выведен И.Ньютоном в 1687 г. опытным путем (и, насколько мне известно, до сих пор не подтвержден теоретически). Закон утверждает, что два точечных тела с массами m1 и m2 притягивают друг друга с силой

где r — расстояние между телами, а G — гравитационная постоянная. Ускорение, которое испытывает тело m2, находящееся на расстоянии r от данного тела m1, равно:

a2 = F/m2 = G*m1/r2 (2)

Закон справедлив и для протяженных тел со сферически-симметричным распределением массы, при этом r — расстояние между центрами симметрии тел. Для несферических тел закон соблюдается приближенно, причем тем точнее, чем больше расстояние между телами (между их центрами масс) по отношению к размерам тел.

Все это всем известно еще со школы, и, казалось бы, без математических выкладок добавить больше нечего. Однако это не так.

Согласно (1), сила притяжения пропорциональна массам и обратно пропорциональна квадрату расстояния. Но масса пропорциональна кубу линейного размера тела. Это означает, что если размеры тел и расстояния между ними (при сохранении их плотностей) пропорционально увеличить, например, в 10 раз, то их массы возрастут в 1000 раз, а квадрат расстояния — только в 100, поэтому сила притяжения увеличится в 10 раз! То есть при увеличении масштаба масса растет на порядок быстрее, чем квадрат расстояния! Из-за ничтожного значения гравитационной постоянной силы притяжения между отдельными предметами на поверхности Земли крайне малы по сравнению с силой притяжения самой Земли, но уже в межпланетных масштабах (сотни миллионов километров) увеличение масс компенсирует G и гравитация становится главной силой.

При уменьшении масштабов проявляется обратный эффект, хоть это уже из биологии. Если, к примеру, уменьшить человека до размеров муравья, т.е. примерно в 100 раз, то его масса уменьшится в 1 000 000 раз. А поскольку сила мышц примерно пропорциональна их поперечному сечению, т.е. квадрату линейного размера, то она уменьшится только в 10 000 раз, т.е. будет 100-кратный выигрыш в силе! Нетрудно догадаться, что фактически насекомые обитают в условиях сильно пониженной по сравнению с более крупными животными гравитации. Поэтому вопрос о том, какой вес смог бы поднять муравей, если бы был размером со слона, просто не имеет смысла. Строение тела насекомых и вообще всех мелких животных оптимально именно для пониженного тяготения, и ноги у муравья просто не выдержат веса тела, не говоря уже о каком-то дополнительном грузе. Так сила тяжести накладывает ограничения на размеры наземных животных, и самые крупные из них (например, динозавры), по-видимому, существенную часть времени проводили в воде.

Летательные способности в животном мире также ограничены массой тела. Не только сила мышц, но и площадь крыльев растет пропорционально квадрату линейных размеров, т.е. для при некоторой предельной массе тела полеты становятся невозможными. Эта критическая масса составляет примерно 15-20 кг, что соответствует весу самых тяжелых из земных птиц. Поэтому очень сомнительно, что древние гиганские ящеры действительно могли летать; скорее всего, их крылья позволяли им только планировать с дерева на дерево.

И замечание не совсем по теме. Достаточно распространено мнение, что занятия тяжелой атлетикой замедляют рост спортсменов, поэтому, мол, среди тяжелоатлетов так много низкорослых. На самом деле низкорослость штангистов действительно наблюдается, но только в ограниченных весовых категориях, особенно среди легковесов. В одной книжке по атлетизму приводится даже пояснение, что низкорослые побеждают чаще оттого, что им приходится поднимать штангу на меньшую высоту. На мой взгляд, такой довод совершенно неубедителен. Я же предлагаю следующее объяснение. Каждый тип ткани (мышцы, кости, кожа, жировая прослойка и т.д.), из которых состоит тело, составляет определенный процент от его общего веса. И если предположить, что эти пропорции одинаковы для двух человек разного роста, то более низкий человек, естественно, будет весить меньше. Однако если он за счет мышц наберет такую же массу тела, что и высокий, то это будет означать, что абсолютная мышечная масса у него больше (поскольку немышечной ткани у него просто меньше по определению). А больше мышечная масса — больше сечения мышц, и, следовательно, в этих условиях при равной массе тела низкий тяжелоатлет действительно сильнее высокого, поэтому последние просто отсеиваются.

Однако вернемся к астрономии. Если рассмотреть действие силы тяготения тела О (условно изобразим его точкой) на протяженное тело с центром Q (рис. 1), то можно заметить, что на разные части тела действуют разные силы. Так, самая близкая точка В будет притягиваться сильнее, чем самая далекая А (из-за различия в расстояниях), поэтому вдоль линии QO, соединяющей центры тяжестей обеих тел, тело О будет стремиться растянуть отрезок АВ. На точки С и D, удаленные от линии OQ, сила притяжения будет действовать под углом к линии QO, и эту силу можно разложить на две компоненты: одна направлена параллельно направлению QO, а другая — перпендикулярно к нему — по направлению к центру тела Q. То есть на точки, не лежащие на оси OQ, действует сила, стремящаяся сжать тело в направлении, перпендикулярном направлению на притягивающее тело О. Эти силы растяжения и сжатия называются приливными силами. Их действие на Землю со стороны Луны и Солнца вызывает (как нетрудно догадаться по названию) приливы и отливы.

Чтобы оценить высоту приливной волны на Земле, можно произвести вычисления, подобные оценке сжатия Земли в главе «Земля». Для простоты забудем о суточном вращении Земли и предположим, что вся ее несферичность вызвана притяжением Луны. Приравнивая вес каждого элементарного объема, находящегося на расстоянии r от центра Земли на ее радиусе, перпендикулярном направлению на Луну и направленном на Луну, получим:

m*g п (r) = m*g л (r) — G*m*M²/b2 (3)

где gп(r) — ускорение свободного падения на радиусе, перпендикулярном направлению на Луну, gл(r) — ускорение на радиусе, направленном на Луну, Mл — масса Луны, b — расстояние до Луны, равное разности большой полуоси a орбиты Луны и радиус-вектора r. Зависимость ускорения свободного падения на обеих радиусах одинакова: gп(r) = gл(r) = GM/r², где М — масса, заключенная внутри радиуса r : M(r) = r*4*p*r³/3, где r — плотность вещества. Если все это подставить в уравнение (3), сократить на m и G и принтегрировать по всему радиусу Земли, то получится:

R п 2 = R л 2 — M л 2/p/r*(1/a — 1/(a-R л )) (4)

Если подставить сюда значения радиуса Земли, массы и большой полуоси Луны, получится Rл — Rп

7.3 м, что намного больше высоты реальной приливной волны, однако можно предположить, что в действительности из-за вращения твердая оболочка Земли не успевает изменять свою форму, и реально приливную волну образуют в основном водная и воздушная оболочка, а полная амплитуда колебания твердой коры не превышает одного метра.

Для планет приливные силы ограничивают минимальное расстояние, на которое к ним может приблизиться достаточно крупное тело, например, спутник. Очень эффектно это проявились при недавнем падении кометы Шумейкеров-Леви на Юпитер, когда ядро кометы разорвало на множество частей, падение которых вызвало столько откликов в научном мире. Минимальный радиус круговой орбиты, на которой спутник не разрушается под действием приливных сил центрального тела, называется пределом Роша. Если масса спутника намного меньше массы планеты, то зависимость предела Роша aR от радиуса планеты R, плотностей спутника rs и планеты rp выглядит следующим образом:

aR = 2.46*(rs/rp)1/3*R (5)

Внутри сферы с радиусом aR невозможна также гравитационная конденсация вещества с образованием единого тела. Такова, вероятно, причина образования колец планет-гигантов.

infourok.ru

Почему выпущенный из рук камень падает на Землю? Потому что его притягивает Земля, скажет каждый из вас. В самом деле, камень падает на Землю с ускорением свободного падения. Следовательно, на камень со сто-роны Земли действует сила, направленная к Земле. Согласно третьему закону Ньютона и камень действует на Землю с такой же по модулю силой, направленной к камню. Иными словами, между Землей и камнем действуют силы взаимного притяжения.

«Брошенный горизонтально камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадет наконец на Землю. Если его бросить с большей скоростью, то он упадет дальше» (рис. 1).

Продолжая эти рассуждения, Ньютон приходит к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы с определенной скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался вокруг нее «подобно тому, как планеты описывают в небесном пространстве свои орбиты».

Сейчас нам стало настолько привычным движение спутников вокруг Земли, что разъяснять мысль Ньютона подробнее нет необходимости.

\(F \sim m_1 \cdot m_2\)

Из опыта хорошо известно, что ускорение свободного падения равно 9,8 м/с 2 и оно одинаково для тел, падающих с высоты 1, 10 и 100 м, т. е. не зависит от расстояния между телом и Землей. Это как будто бы означает, что и сила от расстояния не зависит. Но Ньютон считал, что отсчитывать расстояния надо не от поверхности, а от центра Земли. Но радиус Земли 6400 км. Понятно, что несколько десятков, сотен или даже тысяч метров над поверхностью Земли не могут заметно изменить значение ускорения свободного падения.

Докажем это. Обращение Луны вокруг Земли происходит под действием силы тяготения между ними. Приближенно орбиту Луны можно считать окружностью. Следовательно, Земля сообщает Луне центростремительное ускорение. Оно вычисляется по формуле \(a = \frac <4 \pi^2 \cdot R>\), где R – радиус лунной орбиты, равный примерно 60 радиусам Земли, Т ≈ 27 сут 7 ч 43 мин ≈ 2,4∙10 6 с – период обращения Луны вокруг Земли. Учитывая, что радиус Земли Rз ≈ 6,4∙10 6 м, получим, что центростремительное ускорение Луны равно:

Отсюда вытекает важный вывод: ускорение, которое сообщает телам сила притяжения к Земле, убывает обратно пропорционально квадрату расстояния до центра Земли

Закон всемирного тяготения

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними.

И наконец, так как размеры падающих на Землю тел много меньше размеров Земли, то эти тела можно рассматривать как точечные. Тогда под R в формуле (1) следует понимать расстояние от данного тела до центра Земли.

Между всеми телами действуют силы взаимного притяжения, зависящие от самих тел (их масс) и от расстояния между ними.

Физический смысл гравитационной постоянной

Из формулы (1) находим

Отсюда следует, что если расстояние между телами численно равно единице (R = 1 м) и массы взаимодействующих тел тоже равны единице (m1 = m2 = 1 кг), то гравитационная постоянная численно равна модулю силы F. Таким образом (физический смысл),

В СИ гравитационная постоянная выражается в

Опыт Кавендиша

Таким образом, силы притяжения двух тел массой по 1 кг каждое, находящихся на расстоянии 1 м друг от друга, по модулям равны всего лишь 6,67∙10 -11 Н. Это очень малая сила. Только в том случае, когда взаимодействуют тела огромной массы (или по крайней мере масса одного из тел велика), сила тяготения становится большой. Например, Земля притягивает Луну с силой F ≈ 2∙10 20 Н.

Гравитационные силы – самые «слабые» из всех сил природы. Это связано с тем, что гравитационная постоянная мала. Но при больших массах космических тел силы всемирного тяготения становятся очень большими. Эти силы удерживают все планеты возле Солнца.

Значение закона всемирного тяготения

Закон всемирного тяготения лежит в основе небесной механики – науки о движении планет. С помощью этого закона с огромной точностью определяются положения небесных тел на небесном своде на многие десятки лет вперед и вычисляются их траектории. Закон всемирного тяготения применяется также в расчетах движения искусственных спутников Земли и межпланетных автоматических аппаратов.

Возмущения в движении планет. Планеты не движутся строго по законам Кеплера. Законы Кеплера точно соблюдались бы для движения данной планеты лишь в том случае, когда вокруг Солнца обращалась бы одна эта планета. Но в Солнечной системе планет много, все они притягиваются как Солнцем, так и друг другом. Поэтому возникают возмущения движения планет. В Солнечной системе возмущения невелики, потому что притяжение планеты Солнцем гораздо сильнее притяжения другими планетами. При вычислении видимого положения планет приходится учитывать возмущения. При запуске искусственных небесных тел и при расчете их траекторий пользуются приближенной теорией движения небесных тел – теорией возмущений.

Открытие Нептуна. Одним из ярких примеров триумфа закона все-мирного тяготения является открытие планеты Нептун. В 1781 г. английский астроном Вильям Гершель открыл планету Уран. Была вычислена ее орбита и составлена таблица положений этой планеты на много лет вперед. Однако проверка этой таблицы, проведенная в 1840 г., показала, что данные ее расходятся с действительностью.

Ученые предположили, что отклонение в движении Урана вызвано притяжением неизвестной планеты, находящейся от Солнца еще дальше, чем Уран. Зная отклонения от расчетной траектории (возмущения движения Урана), англичанин Адаме и француз Леверрье, пользуясь законом всемирного тяготения, вычислили положение этой планеты на небе. Адаме раньше закончил вычисления, но наблюдатели, которым он сообщил свои результаты, не торопились с проверкой. Тем временем Леверрье, закончив вычисления, указал немецкому астроному Галле место, где надо искать неизвестную планету. В первый же вечер, 28 сентября 1846 г., Галле, направив телескоп на указанное место, обнаружил новую планету. Ее назвали Нептуном.

При помощи закона всемирного тяготения можно вычислить массу планет и их спутников; объяснить такие явления, как приливы и отливы воды в океанах, и многое другое.