Кодоминантное наследование

КОДОМИНАНТНОСТЬ

КОДОМИНАНТНОСТЬ — явление, характерное для всех высших организмов, заключающееся в совместном проявлении обоих аллелей у гетерозиготы.

Значение явления К. в биологии и медицине прежде всего связано с возможностью изучения биохим, и иммунол, методами проявления обоих аллелей (см.) в онтогенетическом, популяционном или эволюционном аспектах. Кодоминантный характер действия аллельных генов позволяет установить начало активности, место и продолжительность действия каждого аллеля в онтогенезе, а также частоту генов в популяциях человека и различных видов живых организмов. Это имеет большое значение для решения вопросов пересадки тканей и органов, а также выявления гетерозиготных носителей наследственных аномалий, что является необходимым условием для проведения медико-генетического консультирования.

Явление К. впервые было обнаружено иммунол, методами. Примером К. является наследование антигенов групп крови АВ и MN у человека (см. Группы крови). Синтез антигенов АВ контролируется разными аллелями одного локуса, который обозначается символом «I». Кодоминантное проявление аллелей I А и I В в гетерозиготе I A I B приводит к тому, что у индивидов IV группы крови в эритроцитах одновременно имеются антигены А и В. Следовательно, синтез антигенов АВ контролируется аллельными генами, проявление которых кодоминантно. Синтез антигенов MN также контролируется кодоминантными аллелями, поэтому в эритроцитах гетерозиготных индивидов присутствуют одновременно антигены М и N.

Детерминация каждого антигена кодоминантным геном (т. е. антиген присутствует независимо от того, находится ли ген в гомо- или гетерозиготном состоянии) является одним из основных принципов иммуногенетики (см.). Кодоминантное действие генов у гетерозигот редко встречается для морфол, признаков, но является характерным для проявления генных эффектов на уровне белковых молекул.

Кодоминантный тип наследования характерен для ферментов и белков сыворотки крови, в частности для гаптоглобинов и трансферринов. Кодоминантный характер проявления эффектов генов на белковом уровне определяет полиморфизм белков или наличие их генетических вариантов. Так, наряду с широко распространенным полиморфизмом групп крови в популяциях людей обнаружен наследственный полиморфизм гаптоглобинов, обусловленный двумя кодоминантными аллельными генами Hp1 и Hp2, а также полиморфизм трансферринов, обусловленный серией кодоминантных аллельных генов.

Именно с явлением К. связано появление у гетерозигот гибридных белковых молекул, которые состоят из различающихся по структуре полипептидных цепей, кодируемых двумя аллелями одного генного локуса. Гибридные белки присутствуют только у гетерозигот и не могут образоваться у гомозиготных индивидов.

Удается обнаружить несколько молекулярных форм ферментов, называемых изоферментами. Это связано, в частности, с наличием множественных аллелей. Множественный аллелизм и явление К. определяют различия между отдельными членами популяции по набору изоферментов и других белков.

Библиография: Дубинин Н. П. Общая генетика, М., 1976; Маккьюсик В. А. Наследственные признаки человека, пер. с англ., М., 1976; Проблемы медицинской генетики, под ред. В. П. Эфроимсона и др., с. 172, М., 1970; Харрис Г. Основы биохимической генетики человека, пер. с англ., М., 1973; Эфроимсон В. П. Иммуногенетика, М., 1971,

xn--90aw5c.xn--c1avg

Справочник химика 21

Химия и химическая технология

Наследование кодоминантное

Если тип наследования кодоминантный, так что каждый генотип соответствует своему, отличному от других фенотипу, и если анализируемые семьи выбирались из популяции независимо от генотипов их членов, то анализ сегрегационньк отношений проводится непосредственно. В этом случае число индивидов в каждом генотипическом классе следует сравнивать с числом, ожидаемым из распределения на основе менделевского закона, с помощью критерия хи-квадрат, как показано в разд. 3.3.3 и табл. 3.7. [c.185]

Явление кодоминирования можно проиллюстрировать на примере наследования групп крови системы MN у человека. Известно, что группы крови системы MN находятся под контролем одного гена (Ь), имеющего два аллеля (Ьм и Ъ ). Если один из родителей имеет группу крови ММ (гомозигота по аллелю М), а другой — NN, то в эритроцитах их детей (гетерозиготы MN) выявляются как антигены М, так и антигены N. Подобные гены носят название кодоминантных генов. [c.84]

Тестирование сегрегационных отношений в отсутствие смещений, связанных с регистрацией кодоминантное наследование [c.182]

При электрофорезе в крахмальном геле фракция альбуминов у некоторых людей иногда делится на две (альбумин А и альбумин В), т.е. у таких людей имеется два независимых генетических локуса, контролирующих синтез альбуминов. Добавочная фракция (альбумин В) отличается от обычного сывороточного альбумина тем, что молекулы этого белка содержат два остатка дикарбоновых аминокислот или более, замещающих в полипептидной цепи обычного альбумина остатки тирозина или цистеина. Существуют и другие редкие варианты альбумина (альбумин Ридинг, альбумин Джент, альбумин Маки). Наследование полиморфизма альбуминов происходит по аутосомному кодоминантному типу и наблюдается в нескольких поколениях. [c.570]

При доминировании сегрегационный анализ сложнее, чем при кодоминантном наследовании. В фенотипическом браке А X а содержатся два генотипических брака АА X аа и Аа х аа. Фенотипический брак А X А охватывает типы АА х АА, АА X Аа и Аа х Аа. Оригинальный метод сегрегационного анализа был разработан Слштом [876]. [c.185]

Наряду с полигенностью МНС характеризуется крайне выраженным полиморфизмом (рис. 3.7). Ни одна другая генетическая система организма не имеет такого количества аллельных форм определенного гена, как МНС. У человека наибольшее число аллельных вариантов (от 20 до 72) известно для генов I класса и ОРр, ООр и ОКр генов II класса. Гены, контролирующие а-цепь антигенов II класса, характеризуются меньшей изменчивостью, а у гена ОКа она по неизвестным причинам вообще отсутствует. Гомологом такого инвариантного гена у мышей является Еа. Число аллелей различных генов, представленное на рис. 3.7, выявлено для кавказской популяции (белой расы). Индейцы Америки и коренное население Востока имеют дополнительные аллели. Крайне высокий уровень аллельных генов и доминирующее присутствие в популяции гетерозигот при условии кодоминантного наследования обусловливает индивидуальность особей вида по антигенам МНС [c.90]

Смотреть страницы где упоминается термин Наследование кодоминантное: [c.152] [c.215] Генетика человека Т.3 (1990) — [ c.152 , c.182 ]

www.chem21.info

Кодоминантное наследование

ЗНАЧЕНИЕ ГРУППОВОЙ СИСТЕМЫ MN В АКУШЕРСКОЙ ПРАКТИКЕ

Начало XX века ознаменовано выдающимся событием К. Landsteiner открыл групповую систему АВО, благодаря чему стало возможным переливание крови. Это открытие стало началом научного этапа в развитии трансфузиологии. В настоящее время известны 23 антигенные системы, составляющие группу крови каждого человека, в том числе система MN. Групповая система MN была открыта К. Landsteiner и Р. Levine в 1927 г. Исследование продолжается и сейчас, так как она является одной из самых сложных групповых систем. Известно более 30 антигенов системы MN. Установлено, что в системе MN осуществляется простое аутосомальное кодоминантное наследование антигенов. В генном локусе системы MN действует пара аллелей М и N, обусловливающих появление в эритроцитах человека двух генотипически гомозиготных фенотипов ММ и NN, а также одного генотипически гетерозиготного фенотипа MN. Среди европейского населения средняя частота фенотипа ММ составляет 30%, NN 20%, MN — 50%. В отличие от групповых антигенов А и В системы АВО антигены М и N не могут совсем отсутствовать в эритроцитах человека. К моменту рождения ребенка групповые антигены М и N полностью сформированы. С помощью аллоиммунных сывороток доказано, что, кроме эритроцитов, антигены М и N содержатся на лейкоцитах и тромбоцитах. Антигены М и N не очень активны, но все же могут вызвать иммунизацию при гемотрансфузии и беременности. Аллоантитела анти-М и анти-N (естественные, подобно а и р) встречаются исключительно редко. Анти-М антитела у человека впервые были выявлены в 1933 г. Wolf и Jonsson. В последние годы обнаружение антител системы MN стало более частым. В 1942 г. Patterson, Race, Taylor убедительно показали возможность иммунизации организма матери антигенами М и N плода в процессе беременности . Jakobowicz и Вгусе в 1951 г. выявили возможность трансплацентарного перехода антител анти-М от матери плоду. В 1960 г. W. Schcffler показал, что появление анти-М антител в сыворотке крови человека зависит от многих причин, но не является генетически детерминированным признаком. Анти-М и анти-N антитела могут быть причиной несовместимости при гемотрансфузиях, а анти-М также и гемолитической болезни новорожденного.

Издание: Акушерство и гинекология
Год издания: 1999
Объем: 2с.
Дополнительная информация: 1999.-N 5.-С.47-48
Просмотров: 86

www.fesmu.ru

Методичка по биологии 2

Государственное бюджетное образовательное учреждение высшего

профессионального образования «Волгоградский государственный медицинский университет»

Министерства здравоохранения Российской Федерации

М.В. Букатин, О.Ю. Кузнецова, Д.А. Кавалерова,

А.Н. Кривицкая, О.Д. Чулков

«Наследственность и изменчивость организмов»

Учебно-методическое пособие для студентов ВУЗов,

обучающихся по специальности:

201000 «Биотехнические системы и технологии»

Заведующий кафедрой гистологии, эмбриологии, цитологии Волгоградского госу-

дарственного медицинского университета, к.м.н. В.Л. Загребин Заведующий кафедрой нормальной физиологии Волгоградского государственного медицинского университета, д.м.н., профессор С.В. Клаучек

Печатается по решению УМК Медико-биологического факультета ВолгГМУ.

О 28 «Основы биологии» часть 2 «Наследственность и изменчивость

организмов» (модуль 4 ) : Учебно-методическое пособие для студентов ВУЗов,

обучающихся по специальности: 201000 «Биотехнические системы и технологии»/

М.В. Букатин, О.Ю. Кузнецова, Д.А. Кавалерова, А.Н. Кривицкая, О.Д. Чулков – Волгоград: КЦ «Эстапм», 2013. – 63 с.

В учебно-методическом пособии представлены основные вопросы Модуля 4: «Наследственность и изменчивость организмов» — Наследуемость признаков и их генетическая детерминируемость. Закономерности передачи генетической инфор-

мации. Нормальная и патологическая наследственность у человека.

Учебно-методическое пособие предназначено для организации и проведения лабораторных и практических занятий со студентами ВУЗов, обучающихся по спе-

циальности: 201000 «Биотехнические системы и технологии».

© М.В. Букатин, О.Ю. Кузнецова, Д.А. Кавалерова,

А.Н. Кривицкая, О.Д. Чулков, 2013

Занятие №8 (лабораторное).

Занятие №9 (лабораторное).

Занятие №10 (лабораторное).

Занятие №11 (практическое). .

ОСНОВНЫЕ РАЗДЕЛЫ ДИСЦИПЛИНЫ В РАМКАХ ИЗУЧАЕМОГО МОДУЛЯ.

МОДУЛЬ 4. Наследственность и изменчивость организмов.

Наследственность, непрерывность жизни и среда.

Наследственность и непрерывность жизни. Наследуемость признаков и их генетическая детерминируемость. Наследование, не связанное с полом. Наследование контролируемое, ограниченное и сцепленное с полом. Изменчивость и непрерывность разнообразия жизни.

Наследственность, изменчивость и среда. Генотип и фенотип. Признаки качественные и количественные. Модификационная изменчивость. Норма реакции.

Методы, генетические модели и уровни изучения наследственности. Генетический анализ и этапы его реализации. Генетические системы, используемые в качестве экспериментальных моделей. Другие методы исследования.

Закономерности передачи генетической информации.

Доминантность и рецессивность. Опыты Г. Менделя. Расщепление (сегрегация) генов. Аллельные гены. Гомозиготные и гетерозиготные организмы. Множественный аллелизм.

Независимое распределение генов. Дигибридные и полигибридные скрещивания. Свободная рекомбинация аллельных пар в гаметах. Хромосомные основы расщепления и независимого перераспределения генов.

Наследственность, сцепленная с полом. Механизмы генетического определения пола. Детерминирование пола окружающей средой. Роль половых хромосом в контролировании признаков.

Сцепление и кроссинговер. Работы Т. Моргана. Группы сцепления. Биологический смысл кроссинговера. Молекулярные механизмы и генетический контроль рекомбинации. Линейный порядок генов в хромосоме.

Нормальная и патологическая наследственность у человека.

Кариотип человека. Генетическое разнообразие и гетерозиготность. Качественные и количественные признаки. Доминирование. Кодоминантное наследование. Полигенные системы. Признаки, сцепленные с полом.

Методы изучения наследственности человека. Генеалогический, цитогенетический, популяционный, близнецовый и молекулярно-генетические методы.

Наследственно обусловленная патология человека. Понятие о генных, хромосомных и мультифакториальных заболеваниях.

Генетическая инженерия и биотехнология.

Генная инженерия. Выделение ДНК. Ферменты-рестриктазы и рестрикция ДНК. Генетические векторы. Конструирование рекомбинантных молекул ДНК. Введение рекомбинантных молекул ДНК в клетки.

Клеточная инженерия. Клеточная инженерия у человека и животных. Клеточная инженерия у растений.

Направления генетической инженерии. Производство пищи. Производство источников энергии и новых материалов. Генетическая инженерия и медицина. Экологические проблемы генетической инженерии.

ЛАБОРАТОРНЫЙ ПРАКТИКУМ И ПРАКТИЧЕСКИЕ ЗАНЯТИЯ.

ЗАНЯТИЕ №8 (Лабораторное).

Тема: Закономерности передачи генетической информации.

Цель: Знать законы Г. Менделя и их цитологическую основу. Изучить закономерности наследования на организменном уровне при взаимодействии аллельных генов.

Перечень практических навыков.

1. Знать закономерности наследования, установленные Г. Менделем, их цитологическую основу.

2. Уметь определять число и типы гамет, продуцируемых организмом.

3. Уметь решать задачи на моно- , ди- и полигибридное скрещивание.

4. Знать и уметь определять формы взаимодействия аллельных генов: полное доминирование, неполное доминирование, кодоминирование, сверхдоминирование, межаллельная комплементация, аллельное исключение.

Основные вопросы, предлагаемые для обсуждения.

1. Доминантность и рецессивность. Опыты Г.Менделя. Расщепление (сегрегация) генов.

2. Аллельные гены. Гомозиготные и гетерозиготные организмы.

3. Множественный аллелизм. Независимое распределение генов.

4. Дигибридное и полигибридное скрещивания.

5. Свободная рекомбинация аллельных пар в гаметах. Хромосомные основы расщепления и независимого перераспределения генов.

Краткое содержание темы.

Законы Менделя – закономерности распределения в потомстве наследственных признаков, установленные Г. Менделем (1822-1884). Основой для их формулирования послужили многолетние (1856-63) опыты по скрещиванию 22 сортов гороха. Выявлению этих закономерностей способствовало применение строгих методов подбора исходного материала, специальной схемы скрещиваний и учета результатов экспериментов. Мендель использовал разработанный им гибридологический метод , основанный на скрещивании организмов.

∙ скрещивание чистых линий,

∙ анализ наследования по отдельным альтернативным признакам,

∙ проведение точного количественного учета наследования каждого альтернативного признака,

∙ прослеживание наследования в ряду поколений,

∙ исследование потомства каждого гибрида в отдельности.

Механизмы, лежащие в основе законов Менделя, были выяснены благодаря изучению образования половых клеток и доказательству хромосомной теории наследственности.

Аллельные (аллеломорфные) гены – это парные гены, находящиеся в одинаковых участках гомологичных хромосом и отвечающие за альтернативное проявление одного и того же признака. При мейозе они расходятся в разные гаметы.

Подавляющие проявление других генов.

Гены, которые проявляются

в гомозиготном состоянии.

Гомозиготные организмы имеют одинаковые аллели одного гена – АА или

Гетерозиготные организмы имеют разные аллели одного гена: один доминантный и один рецессивный — Аа .

Виды взаимодействия аллельных генов.

В гетерозиготе проявляется признак доминантной аллели.

Аа и АА – красный, аа – белый .

В гетерозиготе проявляется признак не похожий ни на одну из гомозигот.

Т.е. доминантный признак не полностью подавляет рецессивный и появляется новый промежуточный признак.

АА – красный, аа – белый,

При неполном доминировании закон единообразия первого поколения не теряет своего значения. Но во втором поколении потомство расщепляется феноти-

пически на три класса в отношении 1:2:1 . При анализирующем скрещивании половина особей получается с рецессивным признаком, половина – с промежуточным.

Примером такого типа взаимодействия генов могут быть многочисленные наследственные заболевания у человека, проявляющиеся клинически у гетерозигот по мутантным аллелям, а у гомозигот заканчивающиеся смертью. Иногда гетерозиготы имеют почти нормальный фенотип, а гомозиготы характеризуются пониженной жизнеспособностью (наследование серповидно-клеточной анемии, талассемии).

Кодоминирование — это наследование, при котором у гибридов проявляются признаки, детерминируемые обеими аллелями. Например, наследование 4 группы крови у человека: фенотип IV(АВ) зависит от наличия в эритроцитах антигенов А и В и отсутствия в сыворотке крови антител α и β.

Сверхдоминирование заключается в том, что у доминантного аллеля в гетерозиготном состоянии иногда отмечается более сильное фенотипическое проявление, чем в гомозиготном состоянии.

Межаллельная комплементация относится к достаточно редко встречаемым способам взаимодействия аллельных генов.

В этом случае возможно формирование нормального признака D у организма, гетерозиготного по двум мутантным аллелям гена D (D’D”). Например, ген D определяет синтез какого-то белка, мутантный ген D’ определяет синтез измененного пептида D’, а мутантный аллель D” приводит к синтезу другой, но тоже измененной структуры пептида D”. Можно представить ситуацию, когда взаимодействие таких измененных пептидов D’и D” при формировании четвертичной структуры, как бы взаимно компенсируя эти изменения, обеспечивает образование белка с нормальными свойствами. Таким образом, с определенной вероятностью у гетерозигот D’D” в результате межаллельной комплементации может образовываться нормальный признак в виде белка с нормальными свойствами.

Аллельное исключение — такой вид взаимодействия аллельных генов в генотипе организма можно рассмотреть на примере инактивации («выключения») одной из Х-хромосом у особей гомозиготного пола. Это приводит дозу активно функционирующих Х-генов у данного пола в соответствие с их дозой у гетерогаметного пола ХО или ХY. Инактивация одного из аллелей в составе Х-хромосомы способствует тому, что в разных клетках организма, мозаичных по функционирующей хромосоме, фенотипически проявляются разные аллели.

Существенно, что два аллеля, занимая гомологичные локусы в паре хромосом, расходятся в гаметы в «чистом» виде. Особь Аа образует половину гамет с аллелем гена А и половину гамет с аллелем гена а ; это обусловлено тем что каждый из аллелей представлен своей молекулярной структурой. Их продукты взаимодей-

ствуют друг с другом при развитии особи, но сами эти структуры устойчиво сохраняются. Это правило получило после Менделя наименование закона чистоты га-

Менделирующими называются признаки, которые наследуются по законам Г. Менделя. В отличие от признаков, наследование которых имеет более сложный характер, по отношению к менделирующим признакам возможно четкое прогнозирование их проявления в потомстве. В основе прогнозирования лежит определение генотипа и фенотипа детей по генотипу родителей или определение генотипа родителей по фенотипу детей.

Первый закон Менделя (закон единообразия гибридов первого поколе-

ния , или закон доминирования), утверждает, что потомство первого поколения от скрещивания устойчивых форм, различающихся по одному признаку, имеет одинаковый фенотип по этому признаку. Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и аа) все их потомки одинаковы по генотипу (гетерозиготны — Аа), а значит, и по фенотипу.

Эксперимент Менделя: были скрещены сорта гороха с зелёными и жёлтыми семенами – все потомки получились с жёлтыми семенами. Так было доказано, что в первом поколении проявляется только один доминантный признак, а второй – рецессивный — подавляется.

Р: АА х аа жёл. зел.

Скрещивание особей, различающихся по одному аллелю, получило название моно-

Закон расщепления, или второй закон Менделя , гласит, что при скрещи-

вании гибридов первого поколения между собой среди гибридов второго поколения в определенных соотношениях появляются особи с фенотипами исходных родительских форм и гибридов первого поколения (расщепление в отношении 3:1 при полном доминировании, 1:2:1 при неполном).

Эксперимент Менделя: были скрещены гибриды первого поколения, во втором поколении ¼часть гибридов имели зелёную окраску семян, а ¾ — жёлтую окраску.

studfiles.net

Наследование признаков человека, сцепленных с полом;

Признаки, наследуемые через половые хромосомы, получили назва­ние сцепленных с полом. У человека признаки, наследуемые через X-хромосому, могут быть только у лиц мужского пола, а наследуемые через Х-хромосо-му — у лиц как одного, так и другого пола. Лицо женского пола может быть как гомо-, так и гетерозиготным по генам, локализованным в Х-хромосоме, а рецессивные аллели генов у него проявляются только в гомозиготном состоянии. Поскольку у лиц мужского пола только одна Х-хромосома, все локализованные в ней гены, даже ре­цессивные, сразу же проявляются в фенотипе. Такой организм называют гемизиготным.

У человека некоторые патологиче­ские состояния наследуются сцепленно с полом. К ним относится, например, гемофилия (медленная свертываемость крови, обусловливающая повышенную кровоточивость).

Аллель гена, контролирующий нор­мальную свертываемость крови (H), и его аллельная пара «ген гемофилии» (h) находятся в Х-хромосоме. Аллель Я доминантен, аллель Н рецессивен, по­этому, если женщина гетерозиготна по этому гену (Х Н Х h ), гемофилия у нее не проявляется. У мужчины только одна Х-хромосома. Следовательно, если у него в Х-хромосоме находит­ся аллель Н, то он и проявляется. Если же Х-хромосома мужчины имеет аллель h, то мужчина страдает гемофи­лией: К-хромосома не несет генов, определяющих механизмы нормально­го свертывания крови.

Если рецессивные признаки, насле­дуемые через Х-хромосому у женщин, проявляются только в гомозиготном состоянии, то доминантные в равной мере проявляются у обоих полов. К та­ким признакам у человека относятся: витаминоустойчивый рахит, темная эмаль зубов и другие.

Признаки, которые наследуются че­рез К-хромосому, получили название голандриуеских. Они передаются от отца всем его сыновьям. К числу таких у человека относится признак, про­являющийся в интенсивном развитии волос на крае ушной раковины.

20. Взаимодействие неаллельных генов: комплиментарность, эпистаз, гипостаз, эффект положения, модифицирующее действие генов, полимерия.

Комплементарное дей­ствие. Комплементарными (лат. complementum — средство пополнения) называются взаимодополняющие гены, когда для формирования признака необходимо наличие нескольких не-аллельных (обычно доминантных) ге­нов. Этот тип наследования в природе широко распространен.

У душистогр горошка окраска вен­чика цветка обусловлена нал чем двух доминантных генов и B), в отсутствие одного из них — цветки белые. Поэтому при скрещивании рас­тений с генотипами ААЬЪ и ааВВ, имеющих белые венчики, в первом поколении растения оказываются ок­рашенными, а во втором поколении расщепление происходит в соотноше­нии 9 окрашенных к 7 неокрашенным (ЗАbb + ЗааВ + 1ааbb).

Комплементарное взаимодействие ге­нов у человека можно показать на следующих примерах. Нормальный слух’ обусловлен двумя доминантными неаллельными генами Dи Е, из кото­рых один определяет развитие улитки, а другой—слухового нерва. Доминант­ные гомозиготы и гетерозиготы по обоим генам имеют нормальный слух, рецессивные гомозиготы по одному из этих генов — глухие.

Эпистаз. Взаимодействие генов, противоположное комплементарному, получило название эпистаза. Под эпистазом понимают подавление неаллельным геном действия другого гена, названного гипостатическим.

Проявление эпистаза у человека можно показать на следующем при­мере. Ген, обусловливающий группы крови по системе Л 60, кодирует не только синтез специфических белков, присущих данной группе крови, но и наличие их в слюне и других секре­тах. Однако при наличии в гомозигот­ном состоянии рецессивного гена по другой системе крови — системе Люис выделение их в слюне и других секре­тах подавлено. Другим примером эпи­стаза у человека может служить «бомбейский феномен» в наследовании групп крови. Он описан у женщины, получившей от матери аллель 1 В , но фенотипическн имеющей первую группу крови. Оказалось, что деятель­ность аллеля 1 В подавлена редким рецессивным аллелем гена «х», ко­торый в гомозиготном состоянии оказы­вает эпистатическое действие.

В проявлении ферментопатий (т. е. болезней, связанных с отсутствием каких-либо ферментов) нередко по­винно эпистатическое взаимодействие генов, когда наличие или отсутствие продуктов реализации какого-либо гена препятствует образованию жиз­ненно важных ферментов, кодируемых другим геном.

Полимерия. Различные- доми­нантные неаллельные гены могут ока­зывать действие на один и тот же при­знак, усиливая его проявление. Та­кие гены получили название однознач­ных, или полимерных, а признаки, ими определяемые,— полигенных. В этом случае два или больше доминант­ных аллелей в одинаковой степени оказывают влияние на развитие одного и того же признака.

Важная особенность полимерии — суммирование (аддитивность) действия неаллельных генов на развитие коли­чественных признаков. Если при моно-генном наследовании признака воз­можно три варианта «дозл гена в гено­типе: АА, Аа, аа. то при полигенном количество их возрастает до четырех и более. Суммирование «доз» полимер­ных генов обеспечивает cуществование непрерывных рядов количественных изменений.

Биологическое значение полимерии заключается еще и в том, что оп­ределяемые этими генами признаки более стабильны, чем кодируемые одним геном. Организм без полимер­ных генов был бы крайне неустой­чив: любая мутация или рекомбинация приводила бы к резкой изменчиво­сти, а это в большинстве случаев не­выгодно.

21. Количественная и качественная специфика проявления генов в признаках: пенетрантность, экспрессивность, плейотропность, генокопии.

Плейотропия. Зависимость нескольких признаков от одного гена носит название плейотропии (гр. рleison — полный, tropos — способ), т. е. на­блюдается проявление множественных эффектов одного гена. Это явление было впервые обнаружено Менделем, хотя он специально его не исследовал. По его наблюдениям у растений с пур­пурными цветками всегда имелась красная окраска в основании черешков листьев, а кожура семян была бурого цвета. Эти три признака определялись действием одного гена. Н. И. Вавилов описал плейотропное действие гена черной окраски колоса у персидской пшеницы, который вызывал одновре­менно развитие другого признака — опушение колосковых чешуи. У дрозо­филы ген белой окраски глаз (w) одно­временно оказывает влияние на цвет тела, длину крыльев, строение поло­вого аппарата, снижает плодовитость, уменьшает продолжительность жизни. У человека известно наследственное заболевание — арахнодактилия («паучьи пальцы»—очень тонкие и длинные), или болезнь Марфана. Ген, опре­деляющий это заболевание, вызывает нарушение развития соединительной ткани и оказывает влияние одновре­менно на развитие нескольких призна­ков: нарушение в строении хрусталика глаза, аномалии в сердечно-сосудис­той системе.

Плейотропное действие гена может быть первичным и вторичным. При первичной плейотропии ген одновре­менно проявляет свое множественное действие. Например, измененный белок взаимодействует с цитоплазмой раз­личных клеточных систем или изме­няет свойства мембран в клетктзс нескольких органов. При вторичной плейотропии имеется одно первичное фенотипическое проявление гена, вслед за которым развивается ступенчатый процесс вторичных проявлений, при­водящих к множественным эффектам (серповидно-клеточная анемия).

При плейотропии ген, влияя на ка­кой-то один основной признак, может также изменять, модифицировать про­явление других генов, в связи с чем введено понятие о генах-модификато­рах. Последние усиливают или ослаб­ляют развитие признаков, кодируемых «основным» геном. Возможно, что каж­дый ген является одновременно геном’ основного действия для «своего» при­знака и модификатором для других признаков. Таким образом, фенотип — результат взаимодействия генов и все­го генотипа с внешней средой в онто­генезе особи.

Пенетрантность.Количественный показатель фенотипического проявления гена назы­вается пенетрантностью. Пенетрантность характеризуется процентом осо­бей, у которых проявляется в фенотипе данный ген, по отношению к общему числу особей, у которых ген мог бы проявиться (если учитывается ре­цессивный ген, то у гомозигот, если доминантный — то у доминантных гомозигот и гетерозигот). Если, на­пример, мутантный ген проявляется у всех особей, говорят о 100 % пене-трантности, в остальных случаях — о неполной и указывают процент осо­бей, проявляющих ген. Так, наследуе­мость групп крови у человека по систе­ме АВО имеет стопроцентную пенетрант-ность, наследственные болезни: эпи­лепсия — 67 %, сахарный диабет — 65 %, врожденный вывих бедра — 20 % и т. д.

Экспрессивность. Термины «экспрессивность» и «пенетрантность» введены в 1927 г. Н. В. Тимофеевым-Ресовским. Экспрессив­ность и пенетрантность поддержива­ются естественным отбором. Обе закономерности необходимо иметь в виду при изучении наследственности у че­ловека. Следует помнить, что гены, контролирующие патологические при­знаки, могут иметь различную пене­трантность и экспрессивность, т. е. проявляться не у всех носителей ано­мального гена, и что у болеющих сте­пень болезненного состояния неоди­накова. Изменяя условия среды, мож­но влиять на проявление признаков.

Положения: 1. Организмов вне среды не суще­ствует. Поскольку организмы являются открытыми системами, находящимися в единстве с условиями среды, то и реализация наследственной информа­ции происходит под контролем среды. 2. Один и тот же генотип способен дать различные фенотипы, что определяется условиями, в которых реализуется ге­нотип в процессе онтогенеза особи. 3. В организме могут развиться лишь те признаки, которые обусловле­ны генотипом. Фенотипическая измен­чивость происходит в пределах нормы реакции по каждому конкретному при­знаку. 4. Условия среды могут влиять на степень выраженности наследственного признака у организмов, имеющих соот­ветствующий ген (экспрессивность), или на численность особей, проявляющих соответствующий наследственный при­знак (пенетрантность).

Генокопии.Ряд сходных по фенотипическому проявлению призна­ков, в том числе и патологических, мо­жет вызываться различными неаллельными генами. Такое явление называет­ся генокопией. Генокопии обусловлива­ют генетическую неоднородность ряда заболеваний. Примером генокопий мо­гут служить различные виды гемо­филии, клинически проявляющиеся понижением свертываемости крови на воздуие.

Оказалось, что эти разные по гене­тическому происхождению формы, свя­занные с мутациями неаллельных ге­нов. Гемофилия А вызвана мутацией гена, контролирующего синтез факто­ра VIII (антигемофильного глобули­на), а причиной гемофилии В являет­ся дефицит фактора IX свертывающей системы крови. Примером генокопии являются также различные формы талассемии (гр. talassa — море) — забо­левания, сопровождающегося распа­дом эритроцитов, желтухой, увеличе­нием селезенки. Известны две формы этого заболевания (α и β), при кото­рых тормозится скорость синтеза раз­ных полепиптидных цепей. Впервые оно было обнаружено у жителей Среди­земноморья. Гены, обусловливающие это заболевание, относятся к сублетальным, как и ген серповидноклеточности.

22. Генотип, геном, фенотип. Генотип как результат реализации наследственной информации в определенных условиях среды. Взаимодействие аллелей в детерминации признаков: доминирование, кодоминирование, неполное доминирование, межаллельная комплементация, аллельное исключение.

Генотип, геном.Несмотря на дискретное генетическое определение отдельных признаков, в индивидуальном развитии воссоздается сбалансированный комплекс признаков и свойств, соответствующий типу морфофункциональной организации конкретного биологического вида. Закономерно возникают плазмодий малярийный, кедр ливанский, аскарида человече­ская, слон индийский, человек разумный. Это достигается вследствие интеграции дискретных в структурном отношении единиц наслед­ственности в целостную в функциональном плане систему — генотип (геном): «генотип» обозначают совокупность аллелей (генов) диплоидного набора хромосом, а термином «геном» — гаплоидного. Такая интеграция находит отражение в разнообразных взаимодействиях генов в процессе их функционирова­ния.

Обычно генотип определяют как совокупность всех генов (более точно аллелей) организма. С учетом факта интеграции генотип представляется системой определенным образом взаимодействующих генов. Генные взаимодействия происходят на нескольких уровнях: непосредственно в генетическом материале клеток, между иРНК и образующимися полипептидами в процессе биосинтеза белка, между белками-ферментами одного метаболического цикла.

Взаимодействие генов на уровне продуктов функциональной активности (РНК или полипептидов) лежит в основе развития сложных признаков. Рассмотрим в качестве примера синдром Морриса. Y больных, кариотип которых включает половые хромосомы X и Y, отмечается недоразвитие вторичных половых признаков мужского пола, которое зависит от продукции и взаимодействия на известной стадии онтогенеза двух факторов — мужского полового гормона и белка-рецептора, встраивающегося в клеточную оболочку и делающего клетки чувствительными к гормону. Синтез указанных факторов контролируется разными генами. У лице синдромом Морриса мужской половой гормон образуется своевременно и в требуемом количестве, но не синтезируется белок-рецептор. Таким образом, нормальное развитие сложного признака комплекса мужских вторичных половых признаков контролируется двумя генами, которые взаимодействуют на уровне продуктов их функциональной активности.

В настоящее время для большинства признаков нельзя указать точно уровень взаимодействия тех генов, которые контролируют их развитие. Учитывая интерес практического врача прежде всего к закономерностям наследования признаков, ниже приводятся формы взаимодействия генов, которые изменяют наследование определенным образом. При этом уровень взаимодействия генов не оговаривается.

Фенотип.Совокупность признаков и свойств особи составляет ее фенотип. Фенотип складывается в процессе индивидуального раз­вития. Он соответствует тому типу структурно-функциональной организации, который свойствен данному биологическому виду. Фенотип развивается в соответствии с наследственной информацией, которая содержится в генотипе. При этом отдельные гены обусловли­вают лишь возможность развития признаков. Эта возможность осуществляется при наличии подходящих условий внешней среды. Внешняя среда включает всю совокупность негенетических (т. е. не связанных непосредственно с наследственным материалом) факторов, действующих на организм в процессе его развития и жизнедеятельности. В зависимости от изменений внешней среды состояние сложных признаков варьирует от организма к организму. Такие вариации называются модификациями.

Они имеют приспособительное значение, а диапазон модификаций каждого призна­ка находится под генетическим контролем. Так, пределы изменения количества эритроцитов в периферической крови человека в зависимо­сти от величины парциального давления кислорода в воздухе ограничены генетически. То или иное значение количества красных кровяных клеток в пределах возможных колебаний зависит от высоты местности над уровнем моря.

Взаимодействие генов и факторов окружающей среды составляет основу развития как отдельных признаков, так и фенотипа в целом. Это нашло отражение в таком генетическом понятии, как «норма реакции»— специфический способ реагирования организма на изменения внешней среды. Она зависит от видовых характеристик и индивидуальных особенностей генотипа. По-другому норму реакции определяют как весь спектр путей развития, которые возможны у носителя конкретного генотипа в любой среде, совместимой с жизнью. По отношению к разным признакам «норма реакции» бывает узкой и широкой. В первом случае одинаковое состояние признака возникает в широком спектре колебаний факторов среды. Во втором — признак отличается значительной изменчивостью в зависимости от параметров внешней среды. В качестве примера приведем соответственно систему групп крови АВО и рост индивидуума. Рис. 48 дает представление о диапазоне варьирования степени развития признаков с узкрй и широкой нормой реакции в зависимости от генотипа.

Сходные состояния некоторых признаков возникают у одних особей благодаря наличию в генотипе определенного аллеля, а у других — в результате особого сочетания внешних факторов. Изменения фенотипа, сходные с изменениями генетической природы, но вызванные фактора­ми внешней среды, называются фенокопиями. Так, у женщин, перенесших на ранних сроках беременности краснуху, нередко рожда­ются дети с врожденной катарактой (помутнение хрусталика), не отличимой от наследственной катаракты.

К основным факторам, от которых зависит фенотип организма, относятся гены с присущими им свойствами, разного рода генные взаимодействия и параметры внешней среды, в которой осуществляется развитие. Проиллюстрируем действие этих факторов на примере развития признака пола.У раздельнополых организмов среди новорожденных соотношение числа особей мужского и женского пола близко 1:1

Аллельное исключение.Выделяют взаимодействие аллельных и неаллельных генов. Основные формы взаимодействия ал­лельных генов рассмотрены выше. Они обусловливают доминантное, рецессивное, кодоминантное наследование признаков, явление неполно­го доминирования. При перечисленных формах доминирования ре­зультаты взаимодействия генов проявляются во всех соматических клетках организма. При такой форме взаимодействия как аллельное исключение в части клеток организма, гетеро­зиготного по данному локусу, активен один аллель, тогда как в других клетках другой. В качестве примера рассмотрим генетический контроль синтеза иммуноглобулинов — белков плазмы крови, которые обеспечи­вают в организме человека реакции иммунологической защиты. Они состоят из «тяжелых» и «легких» полипептидных цепей, которые синтезируются под генетическим контролем трех разных групп неаллельных генов. И «тяжелые», и «легкие» полипептиды образуются плазматическими

клетками. При этом отдельные плазматические клетки синтезируют лишь по одному из возможных вариантов «тяжелых» и «легких» полипептидов глобулинов. Аллельное исключе­ние увеличивает разнообразие признаков многоклеточного организма при идентичности генотипов соматических клеток. Механизм этого явления окончательно не установлен. Другим примером аллельного исключения является генетическая инактивация одной из Х-хромосом женских особей. В мировой литературе описаны лишь единичные случаи заболевания женщин гемофилией. Вместе с тем матери — гетерози­готные носители аллеля гемофилии — передают его половине своих дочерей, которые нормальный аллель получают с Х-хромосомой отца. Случайный характер инактивации путем гетерохроматизации приво­дит к выключению из функции в одних клетках материнской, а в дру­гих—отцовской Х-хромосомы. Таким образом, всегда остаются клетки, которые несут нормальный аллель синтеза антигемофилическо-го фактора в активном состоянии.

Неполное доминирование.Одной из форм взаимодействия аллельных генов является неполное доминирование, которое заключается в ослаблении действия доминантного аллеля в присутствии ре­цессивного. Так, активность фермента фенил ал анингидроксилазы у но­сителей одновременно нормального и аномального (рецессивного) аллелей выше, чем у больных фенилкетонурией, имеющих два аномальных аллеля, но ниже, чем у носителей двух нормальных аллелей. Неполное доминирование отражает собой, по-видимому, дозированность действия доминантных аллелей.

studopedia.su