Правила кубических корней

Правила кубических корней

ВОЗВЕДЕНИЕ В СТЕПЕНЬ. ИЗВЛЕЧЕНИЕ КОРНЯ.

§ 7. Извлечение кубических корней.

Таблица кубов. 1 3 =1, 2 3 =8, 3 3 =27, 4 3 =64, 5 3 =125, 6 3 =216, 7 3 =343, 8 3 =512, 9 3 =729.

Правило. Разбиваем цифры числа с правой стороны к левой на грани по три цифры в каждой, при чем в последней грани могут оказаться три цифры, две или одна.
Извлекаем корень из числа, обозначенного первой гранью; получится первая цифра корня.
Куб числа, обозначенного найденной цифрой, вычитаем из числа первой грани; к остатку сносим вторую грань; составится первый остаток.
В обозначении остатка отделяем две цифры справа.
Число, обозначенное остальными цифрами, делим на утроенный квадрат найденного числа корня; получится вторая цифра корня или результат больший истинного.
Для поверки найденного частного приписываем цифру его к обозначению утроенного найденного числа кория, умножаем результат на испытуемое число, прибавляем к произведению утроенный квадрат найденного числа корня, умноженный на сто, и сумму снова умножаем на испытуемое число.
Если произведение не больше первого остатка, то цифра корня найдена верно.
Полученное указанным рядом действий число вычитаем из первого остатка и сносим следующую грань; составится второй остаток.
Поступая с ним подобно тому, как с первым остатком, получим третью цифру корня и т. д..

Если а обозначает найденное число корня, то остаток подкоренного числа, полученный при отыскании а, всегда будет меньше числа 3а 2 + 3а +1.

Извлечь кубический корень из чисел:

261. 4913 261. 12167 262. 32768 262. 91125

263. 21952 263. 4096 264. 74088 264. 59319

265. 132651 265. 238328 266. 551368 266. 357911

267. 753571 267. 658503 268. 884736000 268. 421875000

269. 157464 269. 314432 270. 85184000 270. 970299000

271. 3652264 271. 9663597 272. 30959144 272. 71473375

273. 8741816 273. 28652616 274. 137388096 274. 34645976

275. 539353144 275. 146363183

276. 139798359 276. 96071912

277. 622835864 277. 401947272

278. 849278123 278. 445943744

279. 134453795867 279. 219365327791

280. 15888972744 280. 34233150223

Для извлечения корня из простой дроби нужно извлечь корень отдельно из числителя и знаменателя и затем разделить первый результат на второй. В нижеследующих примерах все простые дроби несократимы.

Чтобы извлечь кубический корень из десятичной дроби, содержащей тройное число десятичных знаков, нужно извлекать, как из целого числа, и отделить запятой цифры, получаемые от извлечения корня из целого слагаемого дроби.

Извлечь корни из дробных чисел:

287. 0,004096 287. 0,006859 288. 68,921 288. 50,653

289. 0,000005832 289. 0,000175616

290. 0,000030664297 290. 0,000055306341

oldskola1.narod.ru

Мы знаем, что для приближённого извлечения квадратных корней можно пользоваться специальными таблицами. Точно так же таблицами можно пользоваться и для приближённого извлечения кубического корня. Кубические корни встречаются значительно реже, чем квадратные, поэтому в пособии В. . Брадиса нет специальной таблицы кубических корней. Для извлечения кубических корней пользуются таблицей кубов.

Поясним на примерах, как это делается. Для извлечения кубического корня надо проделать те же операции, что и при возведении в куб, но в обратном порядке. Таблица кубов содержит кубы чисел с некоторыми промежутками от 1 до 10. Так как при возрастании числа от 1 до 10 его куб возрастает от 1 до 1000 (проследите это по таблице), то по таблице можно извлекать кубические корни из чисел от 1 до

Пусть, например, требуется найти . В таблице среди значений кубов находим число 712,1. Оно стоит в строке с пометкой 8,9 и в столбце с пометкой 3. Значит, так как Проверим это вычислением:

Теперь вычислим . В таблице среди значений кубов нет числа 56,23, но ближайшим к нему числом является 56,18, которое стоит в строке с пометкой 3,8 и в столбце с пометкой 3. Поэтому можно считать

Проверим это вычислением:

Если желательно определить четвёртую значащую цифру корня, то составим разность

В табличке поправок в соответствующей строке нет поправки 5, а есть ближайшая к ней поправка 4, которая стоит в столбце с пометкой 1; значит,

Вычислить Увеличим подкоренное число в 1000 раз, тогда получим 283,8. Число мы можем найти по таблице . Но если подкоренное число увеличить в 1000 раз, то корень увеличится в 10 раз (например, но Значит, чтобы получить первый результат, надо полученное число уменьшить в 10 раз.

Итак,

Извлечение кубического корня на счётной линейке. Извлечение кубического корня производится на тех же шкалах, что и возведение в куб. Но действие извлечения кубического корня производится в порядке, обратном действию возведения в куб. При возведении в куб мы основание отмечали визиром на шкале а результат читали на шкале К. Здесь же наоборот, на шкале кубов К визиром отмечаем подкоренное число, а под ним на основной шкале читаем значение корня.

Так, например: (черт. 39); .

В первом примере подкоренное число однозначное (8), и оно ставится в левой трети шкалы, во втором примере подкоренное число двузначное (80), оно ставится

в средней трети, в третьем примере подкоренное число трёхзиачное (800), оно ставится в правой трети шкалы. Чтобы знать, в какой трети ставить произвольное подкоренное число, нужно привести его к одному из разобранных случаев.

Поясним это на примерах:

В итоге получаем правило, аналогичное извлечению квадратного корня:

1) Подкоренное число представляем в виде однозначного, двузначного или трёхзначного числа, умножив его (или разделив) на степень числа 10 с показателем степени, кратным трём.

2) Если подкоренное число представлено в виде однозначного числа, оно устанавливается визиром на левой части шкалы кубов; если оно представлено двузначным числом, — на средней части шкалы кубов; если же оно представлено трёхзначным числом, — то на правой части шкалы кубов.

3). Результат отсчитывается по визиру на основной шкале линейки.

Для того чтобы выяснить, в какой трети шкалы следует установить подкоренное число при извлечении кубического корня, можно рекомендовать такое правило.

Подкоренное число разбивают на грани, по три цифры в каждой грани, влево от занятой, если число больше 1, и вправо от запятой, если оно меньше 1. Если первая слева грань (не считая граней, состоящих из одних нулей) содержит одну значащую цифру, то число устанавливается на левой части шкалы кубов, если в этой грани две цифры, — то на средней части, и если в этой грани три цифры, — то на правой части шкалы.

Пользуясь этим способом, легко найти значность числа и положение запятой, так как каждая грань подкоренного числа,

стоящая слева от запятой, даёт у корня одни знак до запятой, а каждая чисто нулевая грань справа от занятой (если подкоренное число меньше единицы) даёт у корня один нуль после запятой.

Рассмотрим применение этого правила на тех же примерах:

edu.alnam.ru

Корни и степени

Степенью называется выражение вида .

Здесь — основание степени, — показатель степени.

Степень с натуральным показателем

Проще всего определяется степень с натуральным (то есть целым положительным) показателем.

Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
Возвести число в квадрат — значит умножить его само на себя.

Возвести число в куб — значит умножить его само на себя три раза.

Возвести число в натуральную степень — значит умножить его само на себя раз:

Степень с целым показателем

Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.

Это верно для . Выражение не определено.

Определим также, что такое степень с целым отрицательным показателем.

Конечно, все это верно для , поскольку на ноль делить нельзя.

Заметим, что при возведении в минус первую степень дробь переворачивается.

Показатель степени может быть не только целым, но и дробным, то есть рациональным числом. В статье «Числовые множества» мы говорили, что такое рациональные числа. Это числа, которые можно записать в виде дроби , где — целое, — натуральное.

Здесь нам понадобится новое понятие — корень -степени. Корни и степени — две взаимосвязанные темы. Начнем с уже знакомого вам арифметического квадратного корня.

Арифметический квадратный корень

Уравнение имеет два решения: и .

Это числа, квадрат которых равен .

А как решить уравнение ?

Если мы нарисуем график функции , то увидим, что и у этого уравнения есть два решения, одно из которых положительно, а другое отрицательно.

Но эти решения не являются целыми числами. Более того, они не являются рациональными. Для того чтобы записать эти решения, мы вводим специальный символ квадратного корня.

Арифметический квадратный корень из числа — это такое неотрицательное число, квадрат которого равен .

Запомните это определение.

Арифметический квадратный корень обозначается .

1) Квадратный корень можно извлекать только из неотрицательных чисел

2) Выражение всегда неотрицательно. Например, .

Перечислим свойства арифметического квадратного корня:

Запомним, что выражение не равно . Легко проверить:

— получился другой ответ.

Кубический корень

Аналогично, кубический корень из — это такое число, которое при возведении в третью степень дает число .

Например, , так как ;

Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.

Теперь мы можем дать определение корня -ной степени для любого целого .

Корень -ной степени

Корень -ной степени из числа — это такое число, при возведении которого в -ную степень получается число .

Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.

Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.

Итак, — такое число, что . Оказывается, корни можно записывать в виде степеней с рациональным показателем. Это удобно.

Сразу договоримся, что основание степени больше .

Выражение по определению равно .

При этом также выполняется условие, что больше .

Запомним правила действий со степенями:

— при перемножении степеней показатели складываются

— при делении степени на степень показатели вычитаются

— при возведении степени в степень показатели перемножаются

Ты нашел то, что искал? Поделись с друзьями!

Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:

Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.

Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru

Умножение корней: основные правила

Приветствую, котаны! В прошлый раз мы подробно разобрали, что такое корни (если не помните, рекомендую почитать). Главный вывод того урока: существует лишь одно универсальное определение корней, которое вам и нужно знать. Остальное — брехня и пустая трата времени.

Сегодня мы идём дальше. Будем учиться умножать корни, изучим некоторые проблемы, связанные с умножением (если эти проблемы не решить, то на экзамене они могут стать фатальными) и как следует потренируемся. Поэтому запасайтесь попкорном, устраивайтесь поудобнее — и мы начинаем.:)

Вы ведь тоже ещё не вкурили?

Урок получился довольно большим, поэтому я разделил его на две части:

  • Сначала мы разберём правила умножения. Кэп как бы намекает: это когда есть два корня, между ними стоит знак «умножить» — и мы хотим что-то с этим сделать.
  • Затем разберём обратную ситуацию: есть один большой корень, а нам приспичило представить его в виде произведения двух корней попроще. С какого перепугу это бывает нужно — вопрос отдельный. Мы разберём лишь алгоритм.
  • Тем, кому не терпится сразу перейти ко второй части — милости прошу. С остальными начнём по порядку.

    Основное правило умножения

    Начнём с самого простого — классических квадратных корней. Тех самых, которые обозначаются $\sqrt$ и $\sqrt$. Для них всё вообще очевидно:

    Правило умножения . Чтобы умножить один квадратный корень на другой, нужно просто перемножить их подкоренные выражения, а результат записать под общим радикалом:

    Никаких дополнительных ограничений на числа, стоящие справа или слева, не накладывается: если корни-множители существуют, то и произведение тоже существует.

    Примеры. Рассмотрим сразу четыре примера с числами:

    Как видите, основной смысл этого правила — упрощение иррациональных выражений. И если в первом примере мы бы и сами извлекли корни из 25 и 4 без всяких новых правил, то дальше начинается жесть: $\sqrt<32>$ и $\sqrt<2>$ сами по себе не считаются, но их произведение оказывается точным квадратом, поэтому корень из него равен рациональному числу.

    Отдельно хотел бы отметить последнюю строчку. Там оба подкоренных выражения представляют собой дроби. Благодаря произведению многие множители сокращаются, а всё выражение превращается в адекватное число.

    Конечно, не всегда всё будет так красиво. Иногда под корнями будет стоять полная лажа — непонятно, что с ней делать и как преобразовывать после умножения. Чуть позже, когда начнёте изучать иррациональные уравнения и неравенства, там вообще будут всякие переменные и функции. И очень часто составители задач как раз и рассчитывают на то, что вы обнаружите какие-то сокращающиеся слагаемые или множители, после чего задача многократно упростится.

    Кроме того, совсем необязательно перемножать именно два корня. Можно умножить сразу три, четыре — да хоть десять! Правило от этого не поменяется. Взгляните:

    И опять небольшое замечание по второму примеру. Как видите, в третьем множителе под корнем стоит десятичная дробь — в процессе вычислений мы заменяем её обычной, после чего всё легко сокращается. Так вот: очень рекомендую избавляться от десятичных дробей в любых иррациональных выражениях (т.е. содержащих хотя бы один значок радикала). В будущем это сэкономит вам кучу времени и нервов.

    Но это было лирическое отступление. Теперь рассмотрим более общий случай — когда в показателе корня стоит произвольное число $n$, а не только «классическая» двойка.

    Случай произвольного показателя

    Итак, с квадратными корнями разобрались. А что делать с кубическими? Или вообще с корнями произвольной степени $n$? Да всё то же самое. Правило остаётся прежним:

    Чтобы перемножить два корня степени $n$, достаточно перемножить их подкоренные выражения, после чего результат записать под одним радикалом.

    В общем, ничего сложного. Разве что объём вычислений может оказаться больше. Разберём парочку примеров:

    Примеры. Вычислить произведения:

    И вновь внимание второе выражение. Мы перемножаем кубические корни, избавляемся от десятичной дроби и в итоге получаем в знаменателе произведение чисел 625 и 25. Это довольно большое число — лично я с ходу не посчитаю, чему оно равно.

    Поэтому мы просто выделили точный куб в числителе и знаменателе, а затем воспользовались одним из ключевых свойств (или, если угодно — определением) корня $n$-й степени:

    Подобные «махинации» могут здорово сэкономить вам время на экзамене или контрольной работе, поэтому запомните:

    Не спешите перемножать числа в подкоренном выражении. Сначала проверьте: вдруг там «зашифрована» точная степень какого-либо выражения?

    При всей очевидности этого замечания должен признать, что большинство неподготовленных учеников в упор не видят точные степени. Вместо этого они перемножают всё напролом, а затем удивляются: почему это получились такие зверские числа?:)

    Впрочем, всё это детский лепет по сравнению с тем, что мы изучим сейчас.

    Умножение корней с разными показателями

    Ну хорошо, теперь мы умеем перемножать корни с одинаковыми показателями. А что, если показатели разные? Скажем, как умножить обычный $\sqrt<2>$ на какую-нибудь хрень типа $\sqrt[7]<23>$? Можно ли вообще это делать?

    Да конечно можно. Всё делается вот по этой формуле:

    Однако эта формула работает только при условии, что подкоренные выражения неотрицательны. Это очень важное замечание, к которому мы вернёмся чуть позже.

    А пока рассмотрим парочку примеров:

    Как видите, ничего сложного. Теперь давайте разберёмся, откуда взялось требование неотрицательности, и что будет, если мы его нарушим.:)

    Умножать корни несложно

    Почему подкоренные выражения должны быть неотрицательными?

    Конечно, можно уподобиться школьным учителям и с умным видом процитировать учебник:

    Требование неотрицательности связано с разными определениями корней чётной и нечётной степени (соответственно, области определения у них тоже разные).

    Ну что, стало понятнее? Лично я, когда читал этот бред в 8-м классе, понял для себя примерно следующее: «Требование неотрицательности связано с *#&^@(*#@^#)

    %» — короче, я нихрена в тот раз не понял.:)

    Поэтому сейчас объясню всё по-нормальному.

    Сначала выясним, откуда вообще берётся формула умножения, приведённая выше. Для этого напомню одно важное свойство корня:

    Другими словами, мы можем спокойно возводить подкоренное выражение в любую натуральную степень $k$ — при этом показатель корня придётся умножить на эту же степень. Следовательно, мы легко сведём любые корни к общему показателю, после чего перемножим. Отсюда и берётся формула умножения:

    Но есть одна проблема, которая резко ограничивает применение всех этих формул. Рассмотрим вот такое число:

    Согласно только что приведённой формуле мы можем добавить любую степень. Попробуем добавить $k=2$:

    Минус мы убрали как раз потому, что квадрат сжигает минус (как и любая другая чётная степень). А теперь выполним обратное преобразование: «сократим» двойку в показателе и степени. Ведь любое равенство можно читать как слева-направо, так и справа-налево:

    Но тогда получается какая-то хрень:

    Этого не может быть, потому что $\sqrt[3] <-5>\lt 0$, а $\sqrt[3] <5>\gt 0$. Значит, для чётных степеней и отрицательных чисел наша формула уже не работает. После чего у нас есть два варианта:

  • Убиться об стену констатировать, что математика — это дурацкая наука, где «есть какие-то правила, но это неточно»;
  • Ввести дополнительные ограничения, при которых формула станет рабочей на 100%.
  • В первом варианте нам придётся постоянно вылавливать «неработающие» случаи — это трудно, долго и вообще фу. Поэтому математики предпочли второй вариант.:)

    Но не переживайте! На практике это ограничение никак не влияет на вычисления, потому что все описанные проблемы касаются лишь корней нечётной степени, а из них можно выносить минусы.

    Поэтому сформулируем ещё одно правило, которое распространяется вообще на все действия с корнями:

    Прежде чем перемножать корни, сделайте так, чтобы подкоренные выражения были неотрицательны.

    Пример. В числе $\sqrt[3]<-5>$ можно вынести минус из-под знака корня — тогда всё будет норм:

    Чувствуете разницу? Если оставить минус под корнем, то при возведении подкоренного выражения в квадрат он исчезнет, и начнётся хрень. А если сначала вынести минус, то можно хоть до посинения возводить/убирать квадрат — число останется отрицательным.:)

    Таким образом, самый правильный и самый надёжный способ умножения корней следующий:

    1. Убрать все минусы из-под радикалов. Минусы бывают только в корнях нечётной кратности — их можно поставить перед корнем и при необходимости сократить (например, если этих минусов окажется два).
    2. Выполнить умножение согласно правилам, рассмотренным выше в сегодняшнем уроке. Если показатели корней одинаковые, просто перемножаем подкоренные выражения. А если разные — используем злобную формулу \[\sqrt[n]\cdot \sqrt[p]=\sqrt[n\cdot p]<<^

      >\cdot <^>>\].

    3. 3.Наслаждаемся результатом и хорошими оценками.:)
    4. Ну что? Потренируемся?

      Пример 1. Упростите выражение:

      Это самое простой вариант: показатели корней одинаковы и нечётны, проблема лишь в минусе у второго множителя. Выносим этот минус нафиг, после чего всё легко считается.

      Пример 2. Упростите выражение:

      Здесь многих смутило бы то, что на выходе получилось иррациональное число. Да, так бывает: мы не смогли полностью избавиться от корня, но по крайней мере существенно упростили выражение.

      Пример 3. Упростите выражение:

      Вот на это задание хотел бы обратить ваше внимание. Тут сразу два момента:

    5. Под корнем стоит не конкретное число или степень, а переменная $a$. На первый взгляд, это немного непривычно, но в действительности при решении математических задач чаще всего придётся иметь дело именно с переменными.
    6. В конце мы умудрились «сократить» показатель корня и степень в подкоренном выражении. Такое случается довольно часто. И это означает, что можно было существенно упростить вычисления, если не пользоваться основной формулой.
    7. Например, можно было поступить так:

      По сути, все преобразования выполнялись лишь со вторым радикалом. И если не расписывать детально все промежуточные шаги, то в итоге объём вычислений существенно снизится.

      На самом деле мы уже сталкивались с подобным задание выше, когда решали пример $\sqrt<5>\cdot \sqrt[4]<3>$. Теперь его можно расписать намного проще:

      Ну что ж, с умножением корней разобрались. Теперь рассмотрим обратную операцию: что делать, когда под корнем стоит произведение?

      www.berdov.com

      Извлечение корней: способы, примеры, решения.

      Эта статья продолжает тему корень из числа. Здесь мы разберемся с извлечением корня. Сначала определим, что называют извлечением корня, и установим, когда корень извлекается. Дальше изучим принципы, на которых основано нахождение значения корня, после чего на примерах рассмотрим основные способы извлечения корней из натуральных чисел, а затем и из дробных чисел.

      Навигация по странице.

      Что означает «извлечение корня»?

      Введем понятие извлечения корня.

      Извлечением корня называется нахождение значения корня.

      Итак, извлечение корня n -ой степени из числа a – это нахождение числа b , n-ая степень которого равна a . Когда такое число b найдено, то можно утверждать, что мы извлекли корень.

      Заметим, что выражения «извлечение корня» и «нахождение значения корня» одинаково употребимы.

      Когда корень извлекается?

      Говорят, что корень n -ой степени из числа a извлекается точно, когда подкоренное число a возможно представить в виде n -ой степени некоторого числа b . Например, из числа 8 извлекается кубический корень, так как число 8 можно представить как куб числа 2 . Аналогично, из десятичной дроби 1,21 извлекается квадратный корень, так как 1,21=(1,1) 2 .

      Если же подкоренное число a не представляется в виде n -ой степени некоторого числа b , то говорят, что корень n -ой степени из числа a не извлекается. В этом случае либо записанное выражение со знаком корня не имеет смысла на множестве действительных чисел (например, или ), либо записанное выражение имеет смысл, но может быть получено лишь приближенное значение такого корня с точностью до любого десятичного разряда. В качестве примера приведем . Квадратный корень из числа 2 не извлекается, однако может быть найдено его приближенное значение с точностью до любого десятичного разряда, например, (способ нахождения значений подобных корней мы рассмотрим в последнем пункте этой статьи).

      Способы и примеры извлечения корней

      Пришло время разобрать способы извлечения корней. Они базируются на свойствах корней, в частности, на равенстве , которое справедливо для любого неотрицательного числа b.

      Ниже мы по очереди рассмотрим основные способы извлечения корней.

      Начнем с самого простого случая – с извлечения корней из натуральных чисел с использованием таблицы квадратов, таблицы кубов и т.п. Ознакомиться…

      Если же таблицы квадратов, кубов и т.п. нет под руками, то логично воспользоваться способом извлечения корня, который подразумевает разложение подкоренного числа на простые множители. Перейти к изучению этого способа…

      Отдельно стоит остановиться на извлечении корня из отрицательного числа, что возможно для корней с нечетными показателями.

      Дальше мы разберем извлечение корня из дробного числа, в частности, из обыкновенной дроби, десятичной дроби и смешанного числа. Перейти к этому разделу…

      Наконец, рассмотрим способ, позволяющий последовательно находить разряды значения корня. Изучить…

      Использование таблицы квадратов, таблицы кубов и т.д.

      В самых простых случаях извлекать корни позволяют таблицы квадратов, кубов и т.д. Что же представляют собой эти таблицы?

      Таблица квадратов целых чисел от 0 до 99 включительно (она показана ниже) состоит из двух зон. Первая зона таблицы располагается на сером фоне, она с помощью выбора определенной строки и определенного столбца позволяет составить число от 0 до 99 . Для примера выберем строку 8 десятков и столбец 3 единицы, этим мы зафиксировали число 83 . Вторая зона занимает оставшуюся часть таблицы. Каждая ее ячейка находится на пересечении определенной строки и определенного столбца, и содержит квадрат соответствующего числа от 0 до 99 . На пересечении выбранной нами строки 8 десятков и столбца 3 единицы находится ячейка с числом 6 889 , которое является квадратом числа 83 .

      Таблицы кубов, таблицы четвертых степеней чисел от 0 до 99 и так далее аналогичны таблице квадратов, только они во второй зоне содержат кубы, четвертые степени и т.д. соответствующих чисел.

      Таблицы квадратов, кубов, четвертых степеней и т.д. позволяют извлекать квадратные корни, кубические корни, корни четвертой степени и т.д. соответственно из чисел, находящихся в этих таблицах. Объясним принцип их применения при извлечении корней.

      Допустим, нам нужно извлечь корень n -ой степени из числа a , при этом число a содержится в таблице n -ых степеней. По этой таблице находим число b такое, что a=b n . Тогда , следовательно, число b будет искомым корнем n -ой степени.

      В качестве примера покажем, как с помощью таблицы кубов извлекается кубический корень из 19 683 . Находим число 19 683 в таблице кубов, из нее находим, что это число является кубом числа 27 , следовательно, .

      Понятно, что таблицы n -ых степеней очень удобны при извлечении корней. Однако их частенько не оказывается под руками, а их составление требует определенного времени. Более того, часто приходится извлекать корни из чисел, которые не содержатся в соответствующих таблицах. В этих случаях приходится прибегать к другим методам извлечения корней.

      Разложение подкоренного числа на простые множители

      Достаточно удобным способом, позволяющим провести извлечение корня из натурального числа (если конечно корень извлекается), является разложение подкоренного числа на простые множители. Его суть заключается в следующем: после разложения числа на простые множители его достаточно легко представить в виде степени с нужным показателем, что позволяет получить значение корня. Поясним этот момент.

      Пусть из натурального числа a извлекается корень n -ой степени, и его значение равно b . В этом случае верно равенство a=b n . Число b как любое натуральное число можно представить в виде произведения всех своих простых множителей p1, p2, …, pm в виде p1·p2·…·pm , а подкоренное число a в этом случае представляется как (p1·p2·…·pm) n . Так как разложение числа на простые множители единственно, то разложение подкоренного числа a на простые множители будет иметь вид (p1·p2·…·pm) n , что дает возможность вычислить значение корня как .

      Заметим, что если разложение на простые множители подкоренного числа a не может быть представлено в виде (p1·p2·…·pm) n , то корень n -ой степени из такого числа a нацело не извлекается.

      Разберемся с этим при решении примеров.

      Извлеките квадратный корень из 144 .

      Если обратиться к таблице квадратов, данной в предыдущем пункте, то хорошо видно, что 144=12 2 , откуда понятно, что квадратный корень из 144 равен 12 .

      Но в свете данного пункта нас интересует, как извлекается корень с помощью разложения подкоренного числа 144 на простые множители. Разберем этот способ решения.

      Разложим 144 на простые множители:

      То есть, 144=2·2·2·2·3·3 . На основании свойств степени с натуральным показателем с полученным разложением можно провести такие преобразования: 144=2·2·2·2·3·3=(2·2) 2 ·3 2 =(2·2·3) 2 =12 2 . Следовательно, .

      Используя свойства степени и свойства корней, решение можно было оформить и немного иначе: .

      .

      Для закрепления материала рассмотрим решения еще двух примеров.

      Вычислите значение корня .

      Разложение на простые множители подкоренного числа 243 имеет вид 243=3 5 . Таким образом, .

      .

      Является ли значение корня целым числом?

      Чтобы ответить на этот вопрос, разложим подкоренное число на простые множители и посмотрим, представимо ли оно в виде куба целого числа.

      Имеем 285 768=2 3 ·3 6 ·7 2 . Полученное разложение не представляется в виде куба целого числа, так как степень простого множителя 7 не кратна трем. Следовательно, кубический корень из числа 285 768 не извлекается нацело.

      Извлечение корней из дробных чисел

      Пришло время разобраться, как извлекается корень из дробного числа. Пусть дробное подкоренное число записано в виде обыкновенной дроби как p/q . Согласно свойству корня из частного справедливо следующее равенство . Из этого равенства следует правило извлечения корня из дроби: корень из дроби равен частному от деления корня из числителя на корень из знаменателя.

      Разберем пример извлечения корня из дроби.

      Чему равен квадратный корень из обыкновенной дроби 25/169 .

      По таблице квадратов находим, что квадратный корень из числителя исходной дроби равен 5 , а квадратный корень из знаменателя равен 13 . Тогда . На этом извлечение корня из обыкновенной дроби 25/169 завершено.

      .

      Корень из десятичной дроби или смешанного числа извлекается после замены подкоренных чисел обыкновенными дробями.

      Извлеките кубический корень из десятичной дроби 474,552 .

      Представим исходную десятичную дробь в виде обыкновенной дроби: 474,552=474552/1000 . Тогда . Осталось извлечь кубические корни, находящиеся в числителе и знаменателе полученной дроби. Так как 474 552=2·2·2·3·3·3·13·13·13= (2·3·13) 3 =78 3 и 1 000=10 3 , то и . Осталось лишь завершить вычисления .

      .

      Извлечение корня из отрицательного числа

      Отдельно стоит остановиться на извлечении корней из отрицательных чисел. При изучении корней мы сказали, что когда показатель корня является нечетным числом, то под знаком корня может находиться отрицательное число. Таким записям мы придали следующий смысл: для отрицательного числа −a и нечетного показателя корня 2·n−1 справедливо . Это равенство дает правило извлечения корней нечетной степени из отрицательных чисел: чтобы извлечь корень из отрицательного числа нужно извлечь корень из противоположного ему положительного числа, и перед полученным результатом поставить знак минус.

      Рассмотрим решение примера.

      Найдите значение корня .

      Преобразуем исходное выражение, чтобы под знаком корня оказалось положительное число: . Теперь смешанное число заменим обыкновенной дробью: . Применяем правило извлечения корня из обыкновенной дроби: . Осталось вычислить корни в числителе и знаменателе полученной дроби: .

      Приведем краткую запись решения: .

      .

      Порязрядное нахождение значения корня

      В общем случае под корнем находится число, которое при помощи разобранных выше приемов не удается представить в виде n -ой степени какого-либо числа. Но при этом бывает необходимость знать значение данного корня, хотя бы с точностью до некоторого знака. В этом случае для извлечения корня можно воспользоваться алгоритмом, который позволяет последовательно получить достаточное количество значений разрядов искомого числа.

      На первом шаге данного алгоритма нужно выяснить, каков старший разряд значения корня. Для этого последовательно возводятся в степень n числа 0, 10, 100, … до того момента, когда будет получено число, превосходящее подкоренное число. Тогда число, которое мы возводили в степень n на предыдущем этапе, укажет соответствующий старший разряд.

      Для примера рассмотрим этот шаг алгоритма при извлечении квадратного корня из пяти. Берем числа 0, 10, 100, … и возводим их в квадрат, пока не получим число, превосходящее 5 . Имеем 0 2 =0 2 =100>5 , значит, старшим разрядом будет разряд единиц. Значение этого разряда, а также более младших, будет найдено на следующих шагах алгоритма извлечения корня.

      Все следующие шаги алгоритма имеют целью последовательное уточнение значения корня за счет того, что находятся значения следующих разрядов искомого значения корня, начиная со старшего и продвигаясь к младшим. К примеру, значение корня на первом шаге получается 2 , на втором – 2,2 , на третьем – 2,23 , и так далее 2,236067977… . Опишем, как происходит нахождение значений разрядов.

      Нахождение разрядов проводится за счет перебора их возможных значений 0, 1, 2, …, 9 . При этом параллельно вычисляются n -ые степени соответствующих чисел, и они сравниваются с подкоренным числом. Если на каком-то этапе значение степени превзойдет подкоренное число, то значение разряда, соответствующее предыдущему значению, считается найденным, и производится переход к следующему шагу алгоритма извлечения корня, если же этого не происходит, то значение этого разряда равно 9 .

      Поясним эти моменты все на том же примере извлечения квадратного корня из пяти.

      Сначала находим значение разряда единиц. Будем перебирать значения 0, 1, 2, …, 9 , вычисляя соответственно 0 2 , 1 2 , …, 9 2 до того момента, пока не получим значение, большее подкоренного числа 5 . Все эти вычисления удобно представлять в виде таблицы:

      Так значение разряда единиц равно 2 (так как 2 2 3 >5 ). Переходим к нахождению значения разряда десятых. При этом будем возводить в квадрат числа 2,0, 2,1, 2,2, …, 2,9 , сравнивая полученные значения с подкоренным числом 5 :

      Так как 2,2 2 2 >5 , то значение разряда десятых равно 2 . Можно переходить к нахождению значения разряда сотых:

      Так найдено следующее значение корня из пяти, оно равно 2,23 . И так можно продолжать дальше находить значения : 2,236, 2,2360, 2,23606, 2,236067, … .

      Для закрепления материала разберем извлечение корня с точностью до сотых при помощи рассмотренного алгоритма.

      Сначала определяем старший разряд. Для этого возводим в куб числа 0, 10, 100 и т.д. пока не получим число, превосходящее 2 151,186 . Имеем 0 3 =0 3 =1 000 3 =1 000 000>2 151,186 , таким образом, старшим разрядом является разряд десятков.

      Определим его значение.

      Так как 10 3 3 >2 151,186 , то значение разряда десятков равно 1 . Переходим к единицам.

      Таким образом, значение разряда единиц равно 2 . Переходим к десятым.

      Так как даже 12,9 3 меньше подкоренного числа 2 151,186 , то значение разряда десятых равно 9 . Осталось выполнить последний шаг алгоритма, он нам даст значение корня с требуемой точностью.

      На этом этапе найдено значение корня с точностью до сотых: .

      В заключение этой статьи хочется сказать, что существует масса других способов извлечения корней. Но для большинства задач достаточно тех, которые мы изучили выше.

      www.cleverstudents.ru