Правила равенства чисел

Понятие равенства, знак равенства, связанные определения.

Из приведенных рассуждений понятно, что равенство не может существовать без наличия, по крайней мере, двух объектов, иначе нам просто нечего будет сравнивать. Понятно, что можно взять три, четыре и большее число объектов для сравнения. Но оно естественным образом сводится к сравнению всевозможных пар, составленных из этих объектов. Иными словами, оно сводится к сравнению двух объектов. Итак, равенство требует два объекта.

Суть понятия равенства в самом общем смысле наиболее отчетливо передается словом «одинаковые». Если взять два одинаковых объекта, то о них можно сказать, что они равные. В качестве примера приведем два равных квадрата и . Отличающиеся объекты, в свою очередь, называют неравными.

Понятие равенства может относиться как объектам в целом, так и к их отдельным свойствам и признакам. Объекты равны в целом, когда они равны по всем присущим им параметрам. В предыдущем примере мы говорили о равенстве объектов в целом – оба объекта квадраты, они одинакового размера, одинакового цвета, и вообще они полностью одинаковые. С другой стороны, объекты могут быть неравными в целом, но могут иметь некоторые равные характеристики. В качестве примера рассмотрим такие объекты и . Очевидно, они равны по форме –они оба являются кругами. А по цвету и по размеру – неравны, один из них синий, а другой – красный, один маленький, а другой — большой.

Из предыдущего примера для себя отметим, что нужно наперед знать, о равенстве чего именно мы говорим.

Запись равенств, знак равно

Пришло время остановиться на правилах записи равенств. Для этого используется знак равно (его также называют знаком равенства), который имеет вид =, то есть, представляет собой две одинаковые черточки, расположенные горизонтально одна над другой. Знак равно = считается общепринятым.

Стоит отметить, что в математике рассмотренные записи равенств часто используют как определение равенства.

Если письменно требуется обозначить неравенство двух объектов, то используется знак не равно ≠. Мы видим, что он представляет собой перечеркнутый знак равно. В качестве примера приведем запись 1+2≠7 . Ее можно прочитать так: «Сумма единицы и двойки не равна семи». Другой пример |AB|≠5 см. – длина отрезка AB не равна пяти сантиметрам.

Верные и неверные равенства

Записанные равенства могут отвечать смыслу понятия равенства, а могут и противоречить ему. В зависимости от этого равенства подразделяются на верные равенства и неверные равенства. Разберемся с этим на примерах.

Запишем равенство 5=5 . Числа 5 и 5 , вне всякого сомнения, равны, поэтому 5=5 – это верное равенство. А вот равенство 5=2 – неверное, так как числа 5 и 2 не равны.

  • Свойство симметричности, утверждающее, что если первый объект равен второму, то второй равен первому.
  • И, наконец, свойство транзитивности, утверждающее, что если первый объект равен второму, а второй – третьему, то первый равен третьему.
  • Наряду с обычными записями равенств, примеры которых мы привели в предыдущих пунктах, используются так называемые двойные равенства, тройные равенства и так далее, представляющие собой как бы цепочки равенств. Например, запись 1+1+1=2+1=3 является двойным равенством, а |AB|=|BC|=|CD|=|DE|=|EF| — пример четверного равенства.

    С помощью двойных, тройных и т.д. равенств удобно записывать равенство трех, четырех и т.д. объектов соответственно. Эти записи по своей сути обозначают равенство любых двух объектов, составляющих исходную цепочку равенств. К примеру, указанное выше двойное равенство 1+1+1=2+1=3 по сути означает равенство 1+1+1=2+1 , и 2+1=3 , и 1+1+1=3 , а в силу свойства симметричности равенств и 2+1=1+1+1 , и 3=2+1 , и 3=1+1+1 .

    В виде таких цепочек равенств удобно оформлять пошаговое решение примеров и задач, при этом решение выглядит кратко и видны промежуточные этапы преобразования исходного выражения.

    www.cleverstudents.ru

    Получив общее представление о равенствах в математике, можно переходить к более детальному изучению этого вопроса. В этой статье мы, во-первых, разъясним, что такое числовые равенства, а, во-вторых, изучим свойства числовых равенств.

    Что такое числовое равенство?

    Знакомство с числовыми равенствами начинается на самом начальном этапе изучения математики в школе. Обычно это происходит в 1 классе сразу после того, как становятся известными первые числа от 1 до 9 и после того, как обретает смысл фраза «столько же». Тогда то и появляются первые числовые равенства, например, 1=1 , 3=3 и т.п., которые на этом этапе обычно называют просто равенствами без уточняющего определения «числовые».

    Равенствам указанного вида на этом этапе придается количественный или порядковый смысл, который вкладывается в натуральные числа. К примеру, числовое равенство 3=3 отвечало картинке, на которой изображены две ветки дерева, на каждой из которых сидят по 3 птицы. Или когда в двух очередях третьими по порядку стоят наши товарищи Петя и Коля.

    После изучения арифметических действий, появляются более разнообразные записи числовых равенств, например, 3+1=4 , 7−2=5 , 3·2=6 , 8:4=2 и т.п. Дальше начинают встречаться числовые равенства еще более интересного вида, содержащие в своих частях различные числовые выражения, к примеру, (2+1)+3=2+(1+3) , 4·(4−(1+2))+12:4−1=4·1+3−1 и тому подобные. Дальше происходит знакомство с другими видами чисел, и числовые равенства приобретают все более и более разнообразный вид.

    Итак, достаточно ходить вокруг да около, пора уже дать определение числового равенства:

    Числовое равенство – это равенство, в обеих частях которого находятся числа и/или числовые выражения.

    Свойства числовых равенств

    Принципы работы с числовыми равенствами определяются их свойствами. А на свойствах числовых равенств в математике завязано очень многое: от свойств решения уравнений и некоторых методов решения систем уравнений до правил работы с формулами, связывающими различные величины. Этим объясняется необходимость подробного изучения свойства числовых равенств.

    Свойства числовых равенств полностью согласуются с тем, как определены действия с числами, а также находятся в согласии с определением равных чисел через разность: число a равно числу b тогда и только тогда, когда разность a−b равна нулю. Ниже при описании каждого свойства мы будем прослеживать эту связь.

    Основные свойства числовых равенств

    Обзор свойств числовых равенств стоит начать с трех основных свойств, характерных всем без исключения равенствам. Итак, основные свойства числовых равенств это:

    • свойство рефлексивности: a=a ;
    • свойство симметричности: если a=b , то b=a ;
    • и свойство транзитивности: если a=b и b=c , то a=c ,
    • где a , b и c – произвольные числа.

      Свойство рефлексивности числовых равенств относится к тому факту, что число равно самому себе. Например, 5=5 , −2=−2 , и т.п.

      Несложно показать, что для любого числа a справедливо равенство a−a=0 . Действительно, разность a−a можно переписать в виде суммы a+(−a) , а из свойств сложения чисел мы знаем, что для любого числа a существует единственное противоположное число −a , и сумма противоположных чисел равна нулю.

      Свойство симметричности числовых равенств утверждает, что если число a равно числу b , то число b равно числу a . Например, если 2 3 =8 (смотрите степень с натуральным показателем), то 8=2 3 .

      Обоснуем это свойство через разность чисел. Условию a=b отвечает равенство a−b=0 . Покажем, что b−a=0 . Правило раскрытия скобок, перед которыми стоит знак минус, позволяет переписать разность b−a как −(a−b) , она в свою очередь равна −0 , а число, противоположное нулю, есть нуль. Следовательно, b−a=0 , откуда следует, что b=a .

      Свойство транзитивности числовых равенств утверждает равенство двух чисел, когда они оба равны третьему числу. Например, из равенств (смотрите корень из числа) и 4=2 2 следует, что .

      Это свойство также согласуется с определением равных чисел через разность и свойствами действий с числами. Действительно, равенствам a=b и b=c отвечают равенства a−b=0 и b−c=0 . Покажем, что a−c=0 , откуда будет следовать равенство чисел a и c . Так как прибавление нуля не изменяет число, то a−c можно переписать как a+0−c . Нуль заменим суммой противоположных чисел −b и b , при этом последнее выражение примет вид a+(−b+b)−c . Теперь можно выполнить группировку слагаемых следующим образом: (a−b)+(b−c) . А разности в скобках есть нули, следовательно, и сумма (a−b)+(b−c) равна нулю. Этим доказано, что при условии a−b=0 и b−c=0 справедливо равенство a−c=0 , откуда a=c .

      Другие важные свойства

      Из основных свойств числовых равенств, разобранных в предыдущем пункте, вытекает еще ряд свойств, имеющих ощутимую практическую ценность. Давайте разберем их.

      Начнем с такого свойства: если к обеим частям верного числового равенства прибавить (или вычесть) одно и то же число, то получится верное числовое равенство. С помощью букв оно может быть записано так: если a=b , где a и b – некоторые числа, то a+c=b+c для любого числа c .

      Для обоснования составим разность (a+c)−(b+c) . Ее можно преобразовать к виду (a−b)+(c−c) . Так как a=b по условию, то a−b=0 , и c−c=0 , поэтому (a−b)+(c−c)=0+0=0 . Этим доказано, что (a+c)−(b+c)=0 , следовательно, a+c=b+c .

      Идем дальше: если обе части верного числового равенства умножить на любое число или разделить на отличное от нуля число, то получится верное числовое равенство. То есть, если a=b , то a·c=b·c для любого числа c , и если c отличное от нуля число, то и a:c=b:c .

      Действительно, a·c−b·c=(a−b)·c=0·c=0 , откуда следует равенство произведений a·c и b·c . А деление на отличное от нуля число c можно рассматривать как умножение на обратное число 1/c .

      Из разобранного свойства числовых равенств вытекает одно полезное следствие: если a и b отличные от нуля и равные числа, то обратные им числа тоже равны. То есть, если a≠0 , b≠0 и a=b , то 1/a=1/b . Последнее равенство легко доказывается: для этого достаточно обе части исходного равенства a=b разделить на отличное от нуля число, равное произведению a·b .

      И остановимся еще на двух свойствах, позволяющих складывать и умножать соответствующие части верных числовых равенств.

      Если почленно сложить верные числовые равенства, то получится верное равенство. То есть, если a=b и c=d , то a+c=b+d для любых чисел a , b , c и d .

      Обоснуем это свойство числовых равенств, отталкиваясь от уже известных нам свойств. Известно, что к обеим частям верного равенства мы можем прибавить любое число. В равенстве a=b прибавим число c , а в равенстве c+d прибавим число b , в результате получим верные числовые равенства a+c=b+c и c+b=d+b , последнее из которых перепишем как b+c=b+d . Из равенств a+c=b+c и b+c=b+d по свойству транзитивности следует равенство a+c=b+d , которое и требовалось доказать.

      Заметим, что можно почленно складывать не только два верных числовых равенства, но и три, и четыре, и любое конечное их число.

      Завершаем обзор свойств числовых равенств следующим свойством: если почленно перемножить два верных числовых равенства, то получится верное равенство. Сформулируем его формально: если a=b и c=d , то a·c=b·d .

      Доказательство озвученного свойства похоже на доказательство предыдущего. Мы можем умножить обе части равенства на любое число, умножим a=b на c , а c=d на b , получаем верные числовые равенства a·c=b·c и c·b=d·b , последнее из которых перепишем в виде b·c=b·d . Тогда по свойству транзитивности из равенств a·c=b·c и b·c=b·d следует доказываемое равенство a·c=b·d .

      Заметим, что озвученное свойство справедливо для почленного умножения трех и большего числа верных числовых равенств. Из этого утверждения следует, что если a=b , то a n =b n для любых чисел a и b , и любого натурального числа n .

      В заключение этой статьи запишем все разобранные свойства числовых равенств в таблицу:

      Числовые равенства, свойства числовых равенств

      После получения общих сведений о равенствах в математике переходим к более узким темам. Материал этой статьи даст представление о свойствах числовых равенств.

      Что такое числовое равенство

      Первый раз мы сталкиваемся с числовыми равенствами еще в начальной школе, когда происходит знакомство с числами и понятием «столько же». Т.е. самые примитивные числовые равенства это: 2 = 2 , 5 = 5 и т.д. И на том уровне изучения мы называли их просто равенствами, без уточнения «числовые», и закладывали в них количественный или порядковый смысл (который несут натуральные числа). Например, равенство 2 = 2 будет соответствовать изображению, на котором – два цветка и на каждом сидит по две шмеля. Или, к примеру, две очереди, где вторыми по порядку стоят Вася и Ваня.

      По мере появления знаний об арифметических действиях числовые равенства становятся сложнее: 5 + 7 = 12 ; 6 — 1 = 5 ; 2 · 1 = 2 ; 21 : 7 = 3 и т.п. Затем начинают встречаться равенства, в записи которых участвуют числовые выражения разного рода. Например, ( 2 + 2 ) + 5 = 2 + ( 5 + 2 ) ; 4 · ( 4 − ( 1 + 2 ) ) + 12 : 4 − 1 = 4 · 1 + 3 − 1 и т.п. Дальше мы знакомимся с прочими видами чисел, и числовые равенства приобретают все более и более интересный и разнообразный вид.

      Числовое равенство – это равенство, обе части которого состоят из чисел и/или числовых выражений.

      Сложно переоценить значимость свойств числовых равенств в математике: они являются опорой многому, определяют принцип работы с числовыми равенствами, методы решений, правила работы с формулами и многое другое.Очевидно, что существует необходимость детального изучения свойств числовых равенств.

      Свойства числовых равенств абсолютно согласованы с тем, как определяются действия с числами, а также с определением равных чисел через разность: число a равно числу b только в тех случаях, когда разность a − b есть нуль. Далее в описании каждого свойства мы проследим эту связь.

      Основные свойства числовых равенств

      Изучать свойства числовых равенств начнем с трех базовых свойств, которые присущи всем равенствам. Перечислим основные свойства числовых равенств:

      • свойство рефлексивности: a = a ;
      • свойство симметричности: если a = b , то b = a ;
      • свойство транзитивности: если a = b и b = c , то a = c ,где a , b и c – произвольные числа.
      • Определение 2

        Свойство рефлексивности обозначает факт равенства числа самому себе: к примеру, 6 = 6 , − 3 = − 3 , 4 3 7 = 4 3 7 и т.п.

        Нетрудно продемонстрировать справедливость равенства a − a = 0 для любого числа a : разность a − a можно записать как сумму a + ( − a ) , а свойство сложения чисел дает нам возможность утверждать, что любому числу a соответствует единственное противоположное число − a , и сумма их есть нуль.

        Согласно свойству симметричности числовых равенств: если число a равно числу b ,
        то число b равно числу a . К примеру, 4 3 = 64 , тогда 64 = 4 3 .

        Обосновать данное свойство можно через разность чисел. Условию a = b соответствует равенство a − b = 0 . Докажем, что b − a = 0 .

        Запишем разность b − a в виде − ( a − b ) , опираясь на правило раскрытия скобок, перед которыми стоит знак минус. Новая запись выражения равна — 0 , а число, противоположное нулю, это нуль. Таким образом, b − a = 0 , следовательно: b = a .

        Свойство транзитивности числовых равенств гласит, что два числа равны друг другу в случае их одновременного равенства третьему числу. К примеру, если 81 = 9 и 9 = 3 2 , то 81 = 3 2 .

        Свойству транзитивности также отвечает определение равных чисел через разность и свойства действий с числами. Равенствам a = b и b = c соответствуют равенства a − b = 0 и b − c = 0 .

        Докажем справедливость равенства a − c = 0 , из чего последует равенство чисел a и c . Посколькусложение числа с нулем не меняет само число, то a − c запишем в виде a + 0 − c . Вместо нуля подставим сумму противоположных чисел − b и b , тогда крайнее выражение станет таким: a + ( − b + b ) − c . Выполним группировку слагаемых: ( a − b ) + ( b − c ) . Разности в скобках равны нулю, тогда и сумма ( a − b ) + ( b − c ) есть нуль. Это доказывает, что, когда a − b = 0 и b − c = 0 , верно равенство a − c = 0 , откуда a = c .

        Прочие важные свойства числовых равенств

        Основные свойства числовых равенств, рассмотренные выше, являются базисом для ряда дополнительных свойств, довольно ценных в разрезе практики. Перечислим их:

        Прибавив к (или убавив от) обеим частям числового равенства, являющегося верным, одно и то же число, получим верное числовое равенство. Запишем буквенно: если a = b , где a и b – некоторые числа, то a + c = b + c при любом c .

        В качестве обоснования запишем разность ( a + c ) − ( b + c ) .
        Это выражение легко преобразуется в вид ( a − b ) + ( c − c ) .
        Из a = b по условию следует, что a − b = 0 и c − c = 0 , тогда ( a − b ) + ( c − c ) = 0 + 0 = 0 . Это доказывает, что ( a + c ) − ( b + c ) = 0 , следовательно, a + c = b + c ;

        Если обе части верного числового равенства перемножить с любым числом или разделить на число, не равное нулю, тогда получим верное числовое равенство.
        Запишем буквенно: когда a = b , то a · c = b · c при любом числе c . Если c ≠ 0 , тогда и a : c = b : c .

        Равенство верно: a · c − b · c = ( a − b ) · c = 0 · c = 0 , и из него следует равенство произведений a · c и b · c . А деление на отличное от нуля число c возможно записать как умножение на обратное число 1 c ;

        При a и b , отличных от нуля и равных между собой, обратные им числа также равны.
        Запишем: когда a ≠ 0 , b ≠ 0 и a = b , то 1 a = 1 b . Крайнее равенство нетрудно доказать: с этой целью разделим обе части равенства a = b на число, равное произведению a · b и не равное нулю.

        Укажем еще на пару свойств, которые позволяют осуществлять сложение и умножение соответствующих частей верных числовых равенств:

        При почленном сложении верных числовых равенств получается верное равенство. Запись этого свойства такова: если a = b и c = d , то a + c = b + d для любых чисел a , b , c и d .

        Обосновать это полезное свойство возможно, опираясь на указанные ранее свойства. Мы знаем, что к обеим частям верного равенства возможно прибавить любое число.
        К равенству a = b прибавим число c , а к равенству c = d — число b , итогом станут верные числовые равенства: a + c = b + c и c + b = d + b . Крайнее запишем в виде: b + c = b + d . Из равенств a + c = b + c и b + c = b + d согласно свойству транзитивности следует равенство a + c = b + d . Что и нужно было доказать.

        Необходимо уточнить, что почленно можно сложить не только два верных числовых равенства, но и три, и более;

        Наконец, опишем такое свойство: почленное перемножение двух верных числовых равенств дает верное равенство. Запишем при помощи букв: если a = b и c = d , то a · c = b · d .

        Доказательство этого свойства подобно доказательству предыдущего. Умножим обе части равенства на любое число, умножим a = b на c , а c = d на b , получим верные числовые равенства a · c = b · c и c · b = d · b . Крайнее запишем как b · c = b · d . Свойство транзитивности дает возможность из равенства a · c = b · c и b · c = b · d вывести равенство a · c = b · d , которое нам необходимо было доказать.

        И вновь уточним, что данное свойство применимо для двух, трех и более числовых равенств.
        Так, можно записать: если a = b , то a n = b n для любых чисел a и b , и любого натурального числа n .

        Завершим данную статью, собрав для наглядности все рассмотренные свойства:

        Если a = b , то b = a .

        Если a = b и b = c , то a = c .

        Если a = b , то a + c = b + c .

        Если a = b , то a · c = b · c .

        Если a = b и с ≠ 0 , то a : c = b : c .

        Если a = b , a = b , a ≠ 0 и b ≠ 0 , то 1 a = 1 b .

        www.zaochnik.com

        В этой статье собрана информация, формирующая представление о равенстве в контексте математики. Здесь мы выясним, что такое равенство с математической точки зрения, и какие они бывают. Также поговорим о записи равенств и знаке равно. Наконец, перечислим основные свойства равенств и для наглядности приведем примеры.

        Навигация по странице.

        Что такое равенство?

        Понятие равенства неразрывно связано со сравнением – сопоставлением свойств и признаков с целью выявлением схожих черт. А сравнение в свою очередь предполагает наличие двух предметов или объектов, один из которых сравнивается с другим. Если, конечно, не проводить сравнение предмета с самим собой, и то, это можно рассматривать как частный случай сравнения двух предметов: самого предмета и его «точной копии».

        Все приведенные рассуждения применяются и к равенствам в математике, только здесь равенство относится к математическим объектам. То есть, изучая математику, мы будем говорить о равенстве чисел, равенстве значений выражений, равенстве каких-либо величин, например, длин, площадей, температур, производительностей труда и т.п.

        При записи равенств записывают равные объекты и между ними ставят знак равно. Например, запись равных чисел 4 и 4 будет выглядеть следующим образом 4=4 , и ее можно прочитать как «четыре равно четырем». Еще пример: равенство площади SABC треугольника ABC семи квадратным метрам запишется как SABC=7 м 2 . По аналогии можно привести другие примеры записи равенств.

        Записи, в которых используется знак равно, разделяющий два математических объекта (два числа, выражения и т.п.), называют равенствами.

        Свойства равенств

        Из того, как вводится понятие равенства, естественным образом вытекают характерные для него результаты – свойства равенств. Основными являются три свойства равенств:

        • Свойство рефлексивности, утверждающее, что объект равен самому себе.
        • Запишем озвученные свойства на языке математики с помощью букв:

          • a=a ;
          • если a=b , то b=a ;
          • если a=b и b=c , то a=c .
          • Отдельно стоит отметить заслугу второго и третьего свойств равенств – свойств симметричности и транзитивности – в том, что они позволяют говорить о равенстве трех и большего числа объектов через их попарное равенство.

            Двойные, тройные равенства и т.д.