Правила решения примеров с дробями

Умножение обыкновенных дробей: правила, примеры, решения.

Продолжим изучать действия с обыкновенными дробями . Сейчас в центре внимания умножение обыкновенных дробей. В этой статье мы дадим правило умножения обыкновенных дробей, рассмотрим применение этого правила при решении примеров. Также остановимся на умножении обыкновенной дроби на натуральное число. В заключение рассмотрим, как проводится умножение трех и большего количества дробей.

Навигация по странице.

Умножение обыкновенной дроби на обыкновенную дробь

Начнем с формулировки правила умножения обыкновенных дробей: умножение дроби на дробь дает дробь, числитель которой равен произведению числителей умножаемых дробей, а знаменатель равен произведению знаменателей.

То есть, умножению обыкновенных дробей a/b и c/d отвечает формула .

Приведем пример, иллюстрирующий правило умножения обыкновенных дробей. Рассмотрим квадрат со стороной 1 ед. , при этом его площадь равна 1 ед 2 . Разделим этот квадрат на равные прямоугольники со сторонами 1/4 ед. и 1/8 ед. , при этом исходный квадрат будет состоять из 4·8=32 прямоугольников, следовательно, площадь каждого прямоугольника составляет 1/32 долю площади исходного квадрата, то есть, она равна 1/32 ед 2 . Теперь закрасим часть исходного квадрата. Все наши действия отражает рисунок ниже.

Стороны закрашенного прямоугольника равны 5/8 ед. и 3/4 ед. , значит, его площадь равна произведению дробей 5/8 и 3/4 , то есть, ед 2 . Но закрашенный прямоугольник состоит из 15 «маленьких» прямоугольников, значит, его площадь равна 15/32 ед 2 . Следовательно, . Так как 5·3=15 и 8·4=32 , то последнее равенство можно переписать как , что подтверждает формулу умножения обыкновенных дробей вида .

Заметим, что с помощью озвученного правила умножения можно умножать и правильные и неправильные дроби, и дроби с одинаковыми знаменателями, и дроби с разными знаменателями.

Рассмотрим примеры умножения обыкновенных дробей.

Выполните умножение обыкновенной дроби 7/11 на обыкновенную дробь 9/8 .

Произведение числителей умножаемых дробей 7 и 9 равно 63 , а произведение знаменателей 11 и 8 равно 88 . Таким образом, умножение обыкновенных дробей 7/11 и 9/8 дает дробь 63/88 .

Вот краткая запись решения: .

.

Не следует забывать про сокращение полученной дроби, если в результате умножения получается сократимая дробь, и про выделение целой части из неправильной дроби.

Выполните умножение дробей 4/15 и 55/6 .

Применим правило умножения обыкновенных дробей: .

Очевидно, полученная дробь сократима (признак делимости на 10 позволяет утверждать, что числитель и знаменатель дроби 220/90 имеют общий множитель 10 ). Выполним сокращение дроби 220/90 : НОД(220, 90)=10 и . Осталось выделить целую часть из полученной неправильной дроби: .

Заметим, что сокращение дроби можно проводить до вычисления произведений числителей и произведений знаменателей умножаемых дробей, то есть, когда дробь имеет вид . Для этого числа a , b , c и d заменяются их разложениями на простые множители, после чего сокращаются одинаковые множители числителя и знаменателя.

Для пояснения, вернемся к предыдущему примеру.

Вычислите произведение дробей вида .

По формуле умножения обыкновенных дробей имеем .

Так как 4=2·2 , 55=5·11 , 15=3·5 и 6=2·3 , то . Теперь сокращаем общие простые множители: .

Остается лишь вычислить произведения в числителе и знаменателе, после чего выделить целую часть из неправильной дроби: .

.

Следует отметить, что для умножения дробей характерно переместительное свойство, то есть, умножаемые дроби можно менять местами: .

Умножение обыкновенной дроби на натуральное число

Начнем с формулировки правила умножения обыкновенной дроби на натуральное число: умножение дроби на натуральное число дает дробь, числитель которой равен произведению числителя умножаемой дроби на натуральное число, а знаменатель равен знаменателю умножаемой дроби.

С помощью букв правило умножения дроби a/b на натуральное число n имеет вид .

Формула следует из формулы умножения двух обыкновенных дробей вида . Действительно, представив натуральное число как дробь со знаменателем 1, получим .

Рассмотрим примеры умножения дроби на натуральное число.

Выполните умножение дроби 2/27 на 5 .

Умножение числителя 2 на число 5 дает 10 , поэтому в силу правила умножения дроби на натуральное число, произведение 2/27 на 5 равно дроби 10/27 .

Все решение удобно записывать так: .

.

При умножении дроби на натуральное число полученную дробь часто приходится сокращать, а если она еще и неправильная, то представлять ее в виде смешанного числа.

Умножьте дробь 5/12 на число 8 .

По формуле умножения дроби на натуральное число имеем . Очевидно, полученная дробь сократима (признак делимости на 2 указывает на общий делитель 2 числителя и знаменателя). Выполним сокращение дроби 40/12 : так как НОК(40, 12)=4 , то . Осталось выделить целую часть: .

Вот все решение: .

Отметим, что сокращение можно было провести, заменив числа в числителе и знаменателе их разложениями на простые множители. В этом случае решение выглядело бы так: .

.

В заключение этого пункта заметим, что умножение дроби на натуральное число обладает переместительным свойством, то есть, произведение дроби на натуральное число равно произведению этого натурального числа на дробь: .

Умножение трех и большего количества дробей

То, как мы определили обыкновенные дроби и действие умножение с ними, позволяет утверждать, что все свойства умножения натуральных чисел распространяются и на умножение дробей.

Переместительное и сочетательное свойства умножения позволяют однозначно определить умножение трех и большего количества дробей и натуральных чисел. При этом все происходит по аналогии с умножением трех и большего количества натуральных чисел. В частности, дроби и натуральные числа в произведении можно для удобства вычисления переставлять местами, а при отсутствии скобок, указывающих порядок выполнения действий, мы можем сами расставить скобки любым из допустимых способов.

Рассмотрим примеры умножения нескольких дробей и натуральных чисел.

Выполните умножение трех обыкновенных дробей 1/20 , 12/5 , 3/7 и 5/8 .

Запишем произведение, которое нам нужно вычислить . В силу правила умножения дробей записанное произведение равно дроби, числитель которой равен произведению числителей всех дробей, а знаменатель – произведению знаменателей: .

Прежде чем вычислить произведения в числителе и знаменателе, целесообразно заменить все множители их разложениями на простые множители и провести сокращение (можно, конечно, сократить дробь и после умножения, но во многих случаях это требует больших вычислительных усилий): .

.

Выполните умножение пяти чисел .

В этом произведении удобно сгруппировать дробь 7/8 с числом 8 , а число 12 с дробью 5/36 , это позволит упростить вычисления, так как при такой группировке очевидно сокращение. Имеем
.

.

www.cleverstudents.ru

Правила решения примеров с дробями

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень. »
И для тех, кто «очень даже. » )

Итак, что из себя представляют дроби, виды дробей, преобразования — мы вспомнили. Займёмся главным вопросом.

Что можно делать с дробями? Да всё то, что и с обычными числами. Складывать, вычитать, умножать, делить.

Все эти действия с десятичными дробями ничем не отличаются от действий с целыми числами. Собственно, этим они и хороши, десятичные. Единственно, запятую правильно поставить надо.

Смешанные числа, как я уже говорил, малопригодны для большинства действий. Их всё равно надо переводить в обыкновенные дроби.

А вот действия с обыкновенными дробями похитрее будут. И гораздо важнее! Напомню: все действия с дробными выражениями с буковками, синусами, неизвестными и прочая и прочая ничем не отличаются от действий с обыкновенными дробями! Действия с обыкновенными дробями — это основа для всей алгебры. Именно по этой причине мы очень подробно разберём здесь всю эту арифметику.

Сложение и вычитание дробей.

Сложить (отнять) дроби с одинаковыми знаменателями каждый сможет (очень надеюсь!). Ну уж совсем забывчивым напомню: при сложении (вычитании) знаменатель не меняется. Числители складываются (вычитаются) и дают числитель результата. Типа:

Короче, в общем виде:

А если знаменатели разные? Тогда, используя основное свойство дроби (вот оно и опять пригодилось!), делаем знаменатели одинаковыми! Например:

Здесь нам из дроби 2/5 пришлось сделать дробь 4/10. Исключительно с целью сделать знаменатели одинаковыми. Замечу, на всякий случай, что 2/5 и 4/10 это одна и та же дробь! Только 2/5 нам неудобно, а 4/10 очень даже ничего.

Кстати, в этом суть решений любых заданий по математике. Когда мы из неудобного выражения делаем то же самое, но уже удобное для решения.

Ситуация аналогичная. Здесь мы из 16 делаем 48. Простым умножением на 3. Это всё понятно. Но вот нам попалось что-нибудь типа:

Как быть?! Из семёрки девятку трудно сделать! Но мы умные, мы правила знаем! Преобразуем каждую дробь так, чтобы знаменатели стали одинаковыми. Это называется «приведём к общему знаменателю»:

Во как! Откуда же я узнал про 63? Очень просто! 63 это число, которое нацело делится на 7 и 9 одновременно. Такое число всегда можно получить перемножением знаменателей. Если мы какое-то число умножили на 7, к примеру, то результат уж точно на 7 делиться будет!

Если надо сложить (вычесть) несколько дробей, нет нужды делать это попарно, по шагам. Просто надо найти знаменатель, общий для всех дробей, и привести каждую дробь к этому самому знаменателю. Например:

И какой же общий знаменатель будет? Можно, конечно, перемножить 2, 4, 8, и 16. Получим 1024. Кошмар. Проще прикинуть, что число 16 отлично делится и на 2, и на 4, и на 8. Следовательно, из этих чисел легко получить 16. Это число и будет общим знаменателем. 1/2 превратим в 8/16, 3/4 в 12/16, ну и так далее.

Кстати, если за общий знаменатель взять 1024, тоже всё получится, в конце всё посокращается. Только до этого конца не все доберутся, из-за вычислений.

Дорешайте уж пример самостоятельно. Не логарифм какой. Должно получиться 29/16.

Итак, со сложением (вычитанием) дробей ясно, надеюсь? Конечно, проще работать в сокращённом варианте, с дополнительными множителями. Но это удовольствие доступно тем, кто честно трудился в младших классах. И ничего не забыл.

А сейчас мы поделаем те же самые действия, но не с дробями, а с дробными выражениями. Здесь обнаружатся новые грабли, да.

Итак, нам надо сложить два дробных выражения:

Надо сделать знаменатели одинаковыми. Причём только с помощью умножения! Уж так основное свойство дроби велит. Поэтому я не могу в первой дроби в знаменателе к иксу прибавить единицу. (а вот бы хорошо было!). А вот если перемножить знаменатели, глядишь, всё и срастётся! Так и записываем, черту дроби, сверху пустое место оставим, потом допишем, а снизу пишем произведение знаменателей, чтобы не забыть:

И, конечно, ничего в правой части не перемножаем, скобки не открываем! А теперь, глядя на общий знаменатель правой части, соображаем: чтобы в первой дроби получился знаменатель х(х+1), надо числитель и знаменатель этой дроби умножить на (х+1). А во второй дроби — на х. Получится вот что:

Обратите внимание! Здесь появились скобки! Это и есть те грабли, на которые многие наступают. Не скобки, конечно, а их отсутствие. Скобки появляются потому, что мы умножаем весь числитель и весь знаменатель! А не их отдельные кусочки.

В числителе правой части записываем сумму числителей, всё как в числовых дробях, затем раскрываем скобки в числителе правой части, т.е. перемножаем всё и приводим подобные. Раскрывать скобки в знаменателях, перемножать что-то не нужно! Вообще, в знаменателях (любых) всегда приятнее произведение! Получим:

Вот и получили ответ. Процесс кажется долгим и трудным, но это от практики зависит. Порешаете примеры, привыкните, всё станет просто. Те, кто освоил дроби в положенное время, все эти операции одной левой делают, на автомате!

И ещё одно замечание. Многие лихо расправляются с дробями, но зависают на примерах с целыми числами. Типа: 2 + 1/2 + 3/4= ? Куда пристегнуть двойку? Никуда не надо пристёгивать, надо из двойки дробь сделать. Это не просто, а очень просто! 2=2/1. Вот так. Любое целое число можно записать в виде дроби. В числителе — само число, в знаменателе — единица. 7 это 7/1, 3 это 3/1 и так далее. С буквами — то же самое. (а+в) = (а+в)/1, х=х/1 и т.д. А дальше работаем с этим дробями по всем правилам.

Ну, по сложению — вычитанию дробей знания освежили. Преобразования дробей из одного вида в другой — повторили. Можно и провериться. Порешаем немного?)

egesdam.ru

Вычитание обыкновенных дробей: правила, примеры, решения.

Продолжаем изучать действия с обыкновенными дробями. Здесь мы разберемся, как проводится вычитание обыкновенных дробей. Сначала получим правило вычитания дробей с одинаковыми знаменателями. Дальше рассмотрим вычитание дробей с разными знаменателями и приведем примеры вычитания с подробными решениями. После этого остановимся на вычитании дроби из натурального числа и вычитании числа из дроби. В заключение покажем, как проводится вычитание обыкновенных дробей с использованием свойств этого действия.

Сразу заметим, что в этой статье мы будем говорить лишь о вычитании меньшей дроби из большей дроби. Другие случаи разобраны в статье вычитание рациональных чисел.

Вычитание дробей с одинаковыми знаменателями

Для начала приведем пример, который позволит нам выяснить, как проводится вычитание дробей с одинаковыми знаменателями.

Пусть на тарелке находилось пять восьмых долей яблока, то есть, 5/8 яблока, после чего две восьмых доли забрали. По смыслу вычитания (смотрите общее представление о вычитании), указанное действие описывается так: . Понятно, что при этом на тарелке остается 5−2=3 восьмых доли яблока. То есть, .

Рассмотренный пример иллюстрирует правило вычитания дробей с одинаковыми знаменателями: при вычитании дробей с одинаковыми знаменателями из числителя уменьшаемого вычитается числитель вычитаемого, а знаменатель остается прежним.

Озвученное правило с помощью букв записывается так: . Эту формулу и будем использовать при вычитании дробей с одинаковыми знаменателями.

Рассмотрим примеры вычитания дробей с одинаковыми знаменателями.

Выполните вычитание обыкновенной дроби 17/15 из обыкновенной дроби 24/15 .

Знаменатели вычитаемых дробей равны. Числитель уменьшаемого равен 24 , а числитель вычитаемого равен 17 , их разность равна 7 ( 24−17=7 при необходимости смотрите вычитание натуральных чисел). Поэтому вычитание дробей с одинаковыми знаменателями 24/15 и 17/15 дает дробь 7/15 .

Краткий вариант решения выглядит так: .

.

При возможности нужно проводить сокращение дроби и (или) выделение целой части из неправильной дроби, которая получается при вычитании дробей с одинаковыми знаменателями.

Вычислите разность .

Воспользуемся формулой вычитания дробей с одинаковыми знаменателями: .

Очевидно, числитель и знаменатель полученной дроби делятся на 2 (смотрите признак делимости на 2), то есть, 22/12 – сократимая дробь. Выполнив сокращение этой дроби на 2 , приходим к дроби 11/6 .

Дробь 11/6 – неправильная (смотрите правильные и неправильные дроби). Поэтому из нее нужно выделить целую часть: .

Итак, вычисляемая разность дробей с одинаковыми знаменателями равна .

Вот все решение: .

.

Вычитание дробей с разными знаменателями

Вычитание дробей с разными знаменателями сводится к вычитанию дробей с одинаковыми знаменателями. Для этого дроби с разными знаменателями достаточно привести к общему знаменателю.

Итак, чтобы провести вычитание дробей с разными знаменателями, надо:

  • привести дроби к общему знаменателю (обычно дроби приводят к наименьшему общему знаменателю);
  • вычесть полученные дроби с одинаковыми знаменателями.

Рассмотрим примеры вычитания дробей с разными знаменателями.

Отнимите от обыкновенной дроби 2/9 обыкновенную дробь 1/15 .

Так как знаменатели вычитаемых дробей разные, то сначала выполним приведение дробей к наименьшему общему знаменателю: так как НОК(9, 15)=45 , то дополнительным множителем дроби 2/9 является число 45:9=5 , а дополнительным множителем дроби 1/15 является число 45:15=3 , тогда и .

Осталось вычесть из дроби 10/45 дробь 3/45 , получаем , что и дает нам искомую разность дробей с разными знаменателями.

Кратко решение записывается так: .

.

Не следует забывать про сокращение полученной после вычитания дроби, а также про выделение целой части.

Вычтите из дроби 19/9 дробь 7/36 .

После приведения дробей с разными знаменателями к наименьшему общему знаменателю 36 , имеем дроби 76/9 и 7/36 . Вычисляем их разность: .

Полученная дробь сократима, после ее сокращения на 3 , получаем 23/12 . А эта дробь неправильная, выделив из нее целую часть, имеем .

Соберем воедино все выполненные действия при вычитании исходных дробей с разными знаменателями: .

.

Вычитание натурального числа из обыкновенной дроби

Вычитание натурального числа из дроби можно свести к вычитанию обыкновенных дробей. Для этого достаточно представить натуральное число в виде дроби со знаменателем 1. Разберем решение примера.

Выполните вычитание числа 3 из дроби 83/21 .

Так как число 3 равно дроби 3/1 , то .

.

Однако вычитание натурального числа из неправильной дроби удобнее проводить, представив дробь в виде смешанного числа. Покажем решение предыдущего примера этим способом.

Отнимите число 3 от дроби 83/21 .

Сначала выделим целую часть из неправильной дроби 83/21 , имеем , тогда . Осталось провести вычитание натурального числа из смешанного числа: .

.

Вычитание обыкновенной дроби из натурального числа

Вычитание обыкновенной дроби из натурального числа можно свести к вычитанию обыкновенных дробей, представив натуральное число как дробь. Разберем решение примера, иллюстрирующего такой подход.

Отнимите обыкновенную дробь 5/3 от натурального числа 7 .

Представим число 7 как дробь 7/1 , после чего выполним вычитание: .

Выделив целую часть из полученной дроби, получаем окончательный ответ .

.

Однако существует более рациональный способ вычитания дроби из натурального числа. Его преимущества особенно заметны, когда уменьшаемое натуральное число и знаменатель вычитаемой дроби являются большими числами. Все это будет видно из примеров ниже.

Если вычитаемая дробь правильная, то уменьшаемое натуральное число можно заменить суммой двух чисел, одно из которых равно единице, отнять правильную дробь от единицы, после чего завершить вычисления.

Выполните вычитание обыкновенной дроби 13/62 из натурального числа 1 065 .

Вычитаемая обыкновенная дробь – правильная. Заменим число 1 065 суммой 1 064+1 , при этом получим . Осталось вычислить значение полученного выражения (подробнее о вычислении таких выражений мы поговорим в следующем пункте).

В силу свойств вычитания, полученное выражение можно переписать как . Вычислим значение разности в скобках, заменив единицу дробью 1/1 , имеем . Таким образом, . На этом вычитание дроби 13/62 из натурального числа 1 065 завершено.

Вот все решение:

А теперь для сравнения покажем, с какими числами нам бы пришлось работать, если бы мы решили свести вычитание исходных чисел к вычитанию дробей:

.

Если же вычитаемая дробь неправильная, то ее можно заменить смешанным числом, после чего провести вычитание смешанного числа из натурального числа.

Отнимите от натурального числа 644 дробь 73/5 .

Выделим целую часть из неправильной дроби: . Тогда .

Осталось лишь выполнить вычитание правильной дроби из натурального числа, поступим также как в предыдущем примере: .

.

Использование свойств вычитания при вычитании дробей

Для вычитания обыкновенных дробей справедливы все свойства вычитания натуральных чисел. Это следует из смысла, который мы придали обыкновенным дробям и операции вычитания дробей. Свойства вычитания позволяют вычислять значения выражений с дробями. Рассмотрим примеры.

Вычислите значение выражения .

Решения подобных примеров с натуральными числами разобраны в разделе вычитание суммы из числа. Здесь будем действовать аналогично.

Сначала вычислим разность , после чего от нее отнимем дробь 5/6 . Итак, и . После выделения целой части из полученной неправильной дроби получаем .

Так выглядит краткая запись решения: .

.

Когда выражение содержит и натуральные числа и дроби, то при вычислении удобно группировать числа с числами, а дроби с дробями.

Выполните вычитание суммы натурального числа и обыкновенной дроби из суммы натурального числа и обыкновенной дроби .

Нам нужно вычислить разность . Свойства сложения и вычитания позволяют нам провести следующую группировку , что упрощает вычисления. Осталось лишь закончить вычисления: .

.