Решение задач правилом креста

Методика решения задач
на растворы с применением
правила креста

Многие важные вопросы изучения курса химии по ряду причин исключены из школьной программы. Среди них закон эквивалентов, разные способы выражения концентрации растворов, правило креста и многие другие. Однако на факультативных занятиях, при подготовке ребят к олимпиадам без них не обойтись. Да и в жизни ребятам они пригодятся, особенно тем, кто свяжет будущую профессию с химией (заводские лаборатории, аптеки, научно-исследовательская работа, да и просто химия в быту).
Особенно трудно в этом отношении молодым учителям – у них нет той массы дополнительной литературы, которую накопили старые учителя за десятки лет работы в школе, а что издает современная книгопечатная отрасль промышленности – известно всем. Поэтому предлагаемая методика решения задач на растворы с применением правила креста, думается, хоть сколько-то поможет молодым коллегам в этом деле.

«Конверт Пирсона»

Очень часто в лабораторной практике и при решении олимпиадных задач приходится встречаться со случаями приготовления растворов с определенной массовой долей растворенного вещества, смешением двух растворов разной концентрации или разбавлением крепкого раствора водой. В некоторых случаях можно провести достаточно сложный арифметический расчет. Однако это малопродуктивно. Чаще для этого лучше применить правило смешения (диагональную модель «конверта Пирсона», или, что то же самое, правило креста).
Допустим, нужно приготовить раствор определенной концентрации, имея в распоряжении два раствора с более высокой и менее высокой концентрацией, чем нужно нам. Тогда, если обозначить массу первого раствора через m1, а второго – через m2, то при смешивании общая масса смеси будет слагаться из суммы этих масс. Пусть массовая доля растворенного вещества в первом растворе – 1, во втором – 2, а в их смеси – 3. Тогда общая масса растворенного вещества в смеси будет слагаться из масс растворенного вещества в исходных растворах:

m11 + m22 = 3(m1 + m2).

m1(13) = m2(32),

m1/m2 = (32)/(13).

Видно, что отношение массы первого раствора к массе второго раствора есть отношение разности массовых долей растворенного вещества в смеси и во втором растворе к разности соответствующих величин в первом растворе и в смеси.

При решении задач на растворы с разными концентрациями чаще всего применяют диагональную схему правила смешении. При расчетах записывают одну над другой массовые доли растворенного вещества в исходных растворах, справа между ними – его массовую долю в растворе, который нужно приготовить, и вычитают по диагонали из большего меньшее значение. Разности их вычитаний показывают массовые доли для первого и второго растворов, необходимые для приготовления нужного раствора.

Для пояснения этого правила сначала решим простейшую задачу.

ЗАДАЧА 1

Определите концентрацию раствора, полученного при слиянии 150 г 30%-го и 250 г 10%-го растворов какой-либо соли.

Дано:

m1 = 150 г,
m2 = 250 г,
1 = 30%,
2 = 10%.

Найти:

1-й способ (метод пропорций).

Общая масса раствора:

Массу вещества в первом растворе находим методом пропорций, исходя из определения: процентная концентрация раствора показывает, сколько граммов растворенного вещества находится в 100 г раствора:

100 г 30%-го р-ра – 30 г в-ва,

150 г 30%-го р-ра – х г в-ва,

х = 150•30/100 = 45 г.

Для второго раствора составляем аналогичную пропорцию:

100 г 10%-го р-ра – 10 г в-ва,

250 г 10%-го р-ра – y г в-ва,

y = 250•10/100 = 25 г.

Следовательно, 400 г нового раствора содержит 45 + 25 = 70 г растворенного вещества.

Теперь можно определить концентрацию нового раствора:

400 г р-ра – 70 г в-ва,

100 г р-ра – z г в-ва,

z = 100•70/400 = 17,5 г, или 17,5%.

2-й способ (алгебраический).

m11 + m22 = 3(m1 + m2).

3 = (m11 + m22)/(m1 + m2).

В результате находим:

3 = (150•30 + 250•10)/(150 + 250) = 17,5%.

3-й способ (правило креста).

(3 – 10)/(30 – 3) = 150/250.

(30 – 3)•150 = (3 – 10)•250,

4500 – 1503 = 2503 – 2500,

4500 – 2500 = 2503 – 1503,

7000 = 4003, 3 = 7000/400 = 17,5%.

Ответ. При слиянии взятых растворов получится новый раствор с концентрацией 3 = 17,5%.

Теперь решим задачи посложнее.

ЗАДАЧА 2

Определите, сколько нужно взять 10%-го раствора соли и 30%-го раствора этой же соли для приготовления 500 г 20%-го раствора.

Дано:

1 = 10%,
2 = 30%,
3 = 20%,
m3 = 500 г.

Используем правило креста.

Для приготовления 500 г 20%-го раствора соли нужно взять по 10 частей растворов исходных концентраций.
Проверим правильность нашего решения, учитывая, что 1 часть равна 500/(10 + 10) = 25 г.

250 г 10%-го р-ра – х г соли,

х = 250•10/100 = 25 г.

250 г 30%-го р-ра – y г соли,

100 г 30%-го р-ра – 30 г соли,

y = 250•30/100 = 75 г.

m(р-ра) = 250 + 250 = 500 г.

m(соли) = 25 + 75 = 100 г.

Отсюда находим 3:

500 г р-ра – 100 г соли,

100 г р-ра – 3 г соли,

3 = 100•100/500 = 20 г, или 20%.

Ответ. Для приготовления 500 г 20%-го раствора нужно взять исходные растворы по 250 г
(m1 = 250 г, m2 = 250 г).

ЗАДАЧА 3

Определите, сколько нужно взять растворов соли 60%-й и 10%-й концентраций для приготовления 300 г раствора 25%-й концентрации.

1 = 60%,
2 = 10%,
3 = 25%,
3 = 300 г.

Найти:

Решение

Масса одной части: 300/50 = 6 г.

Проверим правильность решения.

100 г 60%-го р-ра – 60 г соли,

90 г 60%-го р-ра – х г соли,

210 г 30%-го р-ра – y г соли,

m(соли) = 54 + 21 = 75 г.

Находим концентрацию нового раствора:

300 г р-ра – 75 г соли,

100 г р-ра – z г соли,

z = 100•75/300 = 25 г, или 25%.

Теперь перейдем к еще более сложным задачам.

ЗАДАЧА 4

Определите массу раствора2СО3 10%-й концентрации и массу сухого кристаллогидрата Na2CO3•10H2O, которые нужно взять для приготовления 540 г раствора 15%-й концентрации.

Дано:

1 = 10%,
3 = 15%,
m3 = 540 г.

1-й способ (через систему уравнений с двумя неизвестными).

Определяем массу соли Na2CO3 в 540 г 15%-го раствора:

100 г 15%-го р-ра – 15 г соли,

540 г 15%-го р-ра – z г соли,

z = 540•15/100 = 81 г.

Cоставляем систему уравнений:

Находим молярную массу:

Избавляемся от лишних неизвестных:

Подставляем m2 и m1 в систему уравнений:

С учетом того, что х = 81 – y, избавляемся от второго неизвестного:

Тогда m2 = 286y/106 = 2,7•37 100 г – это масса необходимого количества кристаллогидрата Na2СО3•10H2O.
Далее находим: х = 81 – y = 81 – 37 = 44 г – это масса соли из 10%-го раствора.
Находим массу 10%-го раствора:

m1 г 10%-го р-ра – 44 г соли,

Видно, что так можно решить данную задачу – способ надежный, но, к сожалению, достаточно длинный, громоздкий и сложный. Им успешно могут воспользоваться учащиеся с достаточно развитым логическим мышлением. Для других он будет сложноват.

2-й способ (правило креста).

Допустим, что Na2СО3•10H2O – это «сухой раствор» (ведь он же содержит воду). Тогда найдем его «концентрацию»:

286 г – 106 г соли,

100 г – х г соли,

х = 100•106/286 = 37 г, или 37%.

Применяем правило креста.

Находим массу одной части и массы веществ:

Ответ. Для приготовления 540 г раствора Na2CO3 15%-й концентрации необходимо взять 440 г 10%-го раствора и 100 г кристаллогидрата.
Таким образом, применение правила креста удобнее и проще при решении подобных задач. Этот способ более экономичен по времени и менее трудоемок.
Правило креста можно применять и в тех случаях, когда нужно получить раствор меньшей концентрации путем разбавления водой более концентрированного раствора или получить более концентрированный раствор путем добавления к исходному раствору сухой смеси. Рассмотрим это на примерах.

ЗАДАЧА 5

Сколько воды нужно добавить к 250 г раствора соли для понижения его концентрации с 45% до 10%?

1 = 45%,
3 = 10%,
m1 = 250 г.

Решение

Принимаем, что концентрация для добавляемой воды – 2 = 0%. Используем правило креста.

Определяем массу одной части через первый раствор: 250/10 = 25 г.
Тогда масса необходимой воды равна:

Проверим правильность решения.
Масса нового раствора:

250 г 45%-го р-ра – х г соли,

100 г 45%-го р-ра – 45 г соли,

х = 250•45/100 = 112,5 г.

Находим 3:

1125 г р-ра – 112,5 г соли,

100 г р-ра – y г соли,

y = 100•112,5/1125 = 10 г, или 10%.

ЗАДАЧА 6

Сколько сухой соли нужно добавить к 250 г раствора 10%-й концентрации для ее увеличения до 45%?

1 = 10%,
m1 = 250 г,
3 = 45%.

Принимаем, что сухая соль – это раствор с 2 = 100%. Используем правило креста.

Определяем массу одной части через первый раствор: 250/55 = 4,5 г.
Определяем массу сухой соли:

m(с. с.) = 4,5•35 = 158 г.

Проверяем правильность решения.
Масса нового раствора:

Масса соли в исходном растворе:

100 г 10%-го р-ра – 10 г соли,

Общая масса соли в новом растворе:

Концентрация нового раствора:

408 г р-ра – 183 г соли,

y = 100•183/408 = 45 г, или 45%.

Ответ. m(с. с.) = 158 г.

Думается, что опытный учитель всегда найдет несколько способов решения любой задачи. Но как учила меня моя первая учительница по химии Клавдия Макаровна в школе № 17 г. Иркутска, так и я стараюсь учить своих учеников: всегда глубоко продумывать и понимать химическую сущность задачи и находить наиболее рациональный способ ее решения, а не просто подгонять под ответ в конце учебника.

him.1september.ru

Основные методы решения задач на смешивание растворов

“Только из союза двоих, работающих вместе и при помощи друг друга, рождаются великие вещи.”

Антуан Де Сент-Экзюпери

Математика многообразна и многогранна. Существует ряд ситуаций в образовательном процессе, когда при изучении какой-либо темы по физике, химии, биологии и т.д. затрагиваются понятия математики, например, существуют задачи, которые решают как на уроках математики, так и на уроках химии. Способы решения задач представляют и учителя химии, и математики, но есть проблема: математики знают математику, а химики — химию. И не всегда способы совпадают.

В данной статье приводятся рекомендации по решению химических задач на смешение растворов разными способами: с помощью расчетной формулы, “Правила смешения”, “Правила креста”, графического метода, алгебраического метода. Приведены примеры решения задач.

1. Основные химические понятия

Приведем некоторые указания к решению задач на растворы.

Основными компонентами этого типа задач являются:

а) массовая доля растворенного вещества в растворе;

б) масса растворенного вещества в растворе;

в) масса раствора.

а) все получившиеся смеси и сплавы являются однородными;

б) смешивание различных растворов происходит мгновенно;

в) объем смеси равен сумме объемов смешиваемых растворов;

г) объемы растворов и массы сплавов не могут быть отрицательными.

Определения и обозначения.

Массовая доля растворенного вещества в растворе — это отношение массы этого вещества к массе раствора.

где — массовая доля растворенного вещества в растворе;

— масса растворенного вещества в растворе;

— масса раствора.

Следствия формулы (1):

— массовая доля растворенного вещества в первом растворе;

— массовая доля растворенного вещества во втором растворе;

— массовая доля растворенного вещества в новом растворе, полученном при смешивании первого и второго растворов;

m1(в-ва), m2(в-ва), m(в-ва) — массы растворенных веществ в соответствующих растворах;

m1(р-ра), m2(р-ра), m(р-ра) — массы соответствующих растворов.

Основными методами решения задач на смешивание растворов являются: с помощью расчетной формулы, “Правило смешения”, “Правило креста”, графический метод, алгебраический метод.

Приведем описание указанных методов.

1.1. С помощью расчетной формулы

В наших обозначениях, получим формулу для вычисления массовой доли вещества (?) в смеси.

1. Масса полученного при смешивании раствора равна:

2. Определим массы растворенных веществ в первом и втором растворах:

m1(в-ва)= •m1(р-ра), m2(в-ва)= •m2(р-ра).

3. Следовательно, масса растворенного вещества в полученном растворе вычисляется как сумма масс веществ в исходных растворах:

m(в-ва) = m1(в-ва) + m2(в-ва) = •m1(р-ра) + •m2(р-ра).

4. Таким образом, массовая доля растворенного вещества в полученном растворе равна:

где — массы соответствующих растворов.

Замечание: При решении задач удобно составлять следующую таблицу.

Смесь двух растворов

Массовая доля растворенного вещества

Масса вещества в растворе

m1

m2

(m1 + m2)

1.2. “Правило смешения”

Воспользуемся формулой (4):

тогда

Отсюда

Таким образом, отношение массы первого раствора к массе второго равно отношению разности массовых долей смеси и второго раствора к разности массовых долей первого раствора и смеси.

Аналогично получаем, что при

Замечание: Формула (5) удобна тем, что на практике, как правило, массы веществ не отвешиваются, а берутся в определенном отношении.

1.3. “Правило креста”

“Правилом креста” называют диагональную схему правила смешения для случаев с двумя растворами.

Слева на концах отрезков записывают исходные массовые доли растворов (обычно слева вверху-большая), на пересечении отрезков — заданная, а справа на их концах записываются разности между исходными и заданной массовыми долями. Получаемые массовые части показывают в каком отношении надо слить исходные растворы.

1.4. Графический метод

Отрезок прямой (основание графика) представляет собой массу смеси, а на осях ординат откладывают точки, соответствующие массовым долям растворенного вещества в исходных растворах. Соединив прямой точки на осях ординат, получают прямую, которая отображает функциональную зависимость массовой доли растворенного вещества в смеси от массы смешанных растворов в обратной пропорциональной зависимости

Полученная функциональная прямая позволяет решать задачи по определению массы смешанных растворов и обратные, по массе смешанных растворов находить массовую долю полученной смеси.

Построим график зависимости массовой доли растворенного вещества от массы смешанных растворов. На одной из осей ординат откладывают точку, соответствующую массовой доли , а на другой — . Обозначим на оси абсцисс точки А и В с координатами (0,0) и (m1 + m2,0), соответственно. На графике точка А(0,0) показывает, что массовая доля всего раствора равна , а точка В(m1 + m2,0) — массовая доля всего раствора равна . В направлении от точки А к точке В возрастает содержание в смеси 2-го раствора от 0 до m1+ m2 и убывает содержание 1-го раствора от m1+ m2 до 0. Таким образом, любая точка на отрезке АВ будет представлять собой смесь, имеющую одну и ту же массу с определенным содержанием каждого раствора, которое влияет на массовую долю растворенного вещества в смеси.

Замечание: Данный способ является наглядным и дает приближенное решение. При использовании миллиметровой бумаги можно получить достаточно точный ответ.

1.5. Алгебраический метод

Задачи на смешивание растворов решают с помощью составления уравнения или системы уравнений.

2. Примеры решения задач

В 100 г 20%-ного раствора соли добавили 300 г её 10%-ного раствора. Определите процентную концентрацию раствора.

Решение:


    C помощью расчетной формулы


Путем последовательных вычислений

    Сколько растворенного вещества содержится:

а) в 100 г 20%-ного раствора; [100•0,2 = 20(г)]

б) в 300 г 10%-ного раствора? [300•0,1 = 30(г)]

Сколько вещества содержится в образовавшемся растворе?

20 г + 30 г = 50 г

Чему равна масса образовавшегося раствора?

100 г + 300 г = 400 г

Какова процентная концентрация полученного раствора?

Пусть х — процентная концентрация полученного раствора. В первом растворе содержится 0,2•100(г) соли, а во втором 0,1•300(г), а в полученном растворе х•(100 + 300)(г) соли. Составим уравнение:

0,2•100 + 0,1•300 = х•(100 + 300);

Задача 2. u(№10.26, [1])

Смешали 10%-ный и 25%-ный растворы соли и получили 3 кг 20%-ного раствора. Какое количество каждого раствора в килограммах было использовано?

а) C помощью уравнения:

Пусть х (кг) — масса 1-го раствора, тогда 3-х (кг) -масса 2-го раствора.

0,1•х (кг) содержится соли в 1-ом растворе,

0,25•(3-х) (кг) содержится соли в 2-ом растворе,

0,2•3 (кг) содержится соли в смеси.

Учитывая, что масса соли в 1-ом и 2-ом растворах равна массе соли в смеси, составим и решим уравнение:

0,1•х + 0,25•(3-х) = 0,2•3;

х = 1, 1кг-масса 1-го раствора

3 — х = 3 — 1 =2 (кг) — масса 2-го раствора.

Ответ: 1 кг, 2 кг.

б) С помощью системы уравнений

Пусть х (кг) — количество первого раствора, у (кг) — количество второго раствора. Система уравнений имеет вид:

Составим диагональную схему

Сосуд емкостью 5 л содержит 2 л р%-ного (по объёму) раствора соли. Сколько литров 20%-ного раствора такой же соли надо налить в сосуд, чтобы процентное содержание соли в сосуде стало наибольшим?

Решение (графический способ)

Заметим, что по условию, объём второго раствора не превышает трёх литров.

  1. Ели р 20, то при добавлении 2-го раствора, процентное содержание соли будет уменьшаться, т.е. прилить нужно 0 л.

xn--i1abbnckbmcl9fb.xn--p1ai