Самое большое разрешение матрицы

Количество пикселей фотоаппарата

Матрица цифрового фотоаппарата состоит из пикселей (pixels), которые представляют собой полупроводниковый фотоэлемент, способный реагировать на освещенность. Направляя на фотоэлементы поток света с объектива, мы на выходе получаем электрический сигнал. Электроника фотокамеры записывает этот сигнал в память в виде снимка в графическом формате.

Посмотрим, на что влияет количество мегапикселей на матрице. Реклама говорит, что чем выше количество пикселей, тем большая детализация изображения и тем лучше фотография. Теоретически это правильно, но до какого-то предела. Большое разрешение фотокамеры нужно, например, если печатать плакат больших размеров. Но если печатать фотографию 15х10 см и выставить на принтере разрешение 300 dpi (это хорошее качество, применяемое в полиграфии), то может хватить и снимка с разрешением в 2 Мп. А что бы напечатать в таком же качестве фотографию формата А4, то необходимо разрешение 7-10 Мп. Поэтому необходимо подумать, а стоит ли переплачивать за разрешение больше 10 Мп.

Цена не должна напрямую зависеть от количества пикселей. Ведь мы уже сказали, что увеличивать количество мегапикселей можно до определенного предела, так вот предел этот определяется качеством фотографии.


Структура матрицы фотокамеры

Так же высокое разрешение снимка может пригодится при редактировании. Вырезая в графическом редакторе часть снимка и увеличивая его, мы получаем достаточное разрешение этого участка если общее разрешение фотоснимка было высоким.

На качество фотографии помимо разрешения матрицы влияет еще и размер каждого пикселя, а об этом в рекламе молчат. При увеличении количества пикселей уменьшается их размер и, соответственно, уменьшается объем собираемого фотоэлементом света. А это приводит к плохой цветопередаче, увеличению шумов, уменьшению светочувствительности. И подумайте, как меняется размер пикселя, если при таком же размере матрицы увеличить их количество? Это в зеркальных фотоаппаратах большие матрицы и там количество мегапикселей может быть больше 10 Мп без ущерба для качества фотографии.


Структура пикселя

Выбирая фотоаппарат, Вы должны знать, на что влияет показатель количества пикселей и не гнаться бездумно за их числом.

Но если Вам действительно нужна детализация, то тогда вы осознано выберете фотоаппарат с большим количеством мегапикселей. Главное знать, что вы себе выбираете и брать то, что Вам нужно действительно для съемки и не попадаться на уловки маркетологов.

vybrat-tekhniku.ru

Какое самое большое разрешение цифрового фотоаппарата?

Нет и не будет в 2011 году никаких 200-мегапиксельных камер от Hasselblad!

Сплетни в Рунете не знают границ:

1. 23.09.2010 отдел разработки Хасселя сообщает о ведущихся им разработках по созданию устройства, способного создать картинку в 200 Мп, путём использования съёмки на 50 Мп матрицу с последовательным её небольшим сдвигом. Речь идёт о том, что при условии успешного завершения тестов в начале 2011 года, существует возможность заводской перекалибровки камер H4D-50MS (с 50 Мп матрицей) на создание снимков по этой технологии.. .

2. Фантазия Сайберсекьюрити. ру не знает границ: «Hasselblad начнет продажи 200-мегапиксельной камеры в 2011 году, » — за счёт разницы в часовых поясах это перевранная «новость» в России появляется 22 сентября вечером — впереди паравоза бежим, лишь бы быть первыми с «сенсацией»..

3. На следующий день Ньюс Ру тиражирует эту новость, тонко не договаривая детали:

а) да, Стиг-Нильсен, директор по развитию продуктов Hasselblad, рассказал, о системе съемки Extended Multishot, предназначенная для съемки статических объектов, но он ни слова не говорил о новой камере;

б) да, по его словам, 200-мегапиксельный полноразмерный оптический сенсор — это вещь достаточно дорогая и крупная даже по меркам премиальных камер, но он прямо говорит, что такокого сенсора и не будет;

1. Hasselblad производит и продаёт среднеформатную 60-ти мегапиксельную камеру, правда, пока в ограниченных количествах: http://www.hasselbladusa.com/products/h-system/h4d-60.aspx


Более распространены 40 и 50 мегапиксельные варианты этой камеры.

2. Уже довольно давно были заявления и о 160 Мп камерах, однако это камеры со сканирующими задниками, непригодные для нормальной фотосъёмки — они очень «медленные» и подходят только для съёмки неподвижных предметов неподвижной камерой (как и в случае вышеупомянутой хассельбладовской технологии Extended Multishot).

otvet.mail.ru

Разрешение матрицы цифрового фотоаппарата.

Матрица цифрового фотоаппарата состоит из множества отдельных светочувствительных элементов — пикселей, каждый такой элемент формирует одну точку на изображении. Чем больше разрешение матрицы, тем выше детализация получаемого снимка.

Кол-во пикселей на матрице называется разрешением матрицы и измеряется в мега пикселях (миллионах пикселях). Каждый такой пиксель воспринимает свет и преобразует его в электрический заряд (чем ярче свет — тем сильней заряд). Поскольку используется информация только о яркости света, картинка получается черно-белой. Чтобы она была цветной, ячейки покрывают цветными фильтрами.

В большинстве матриц каждый пиксель покрыт красным, синим или зеленым фильтром, так называемые RGB фильтры ( R ed – красный, G reen – зеленый, B lue –синий). Фильтр пропускает в ячейку лучи только своего цвета, поэтому каждый пиксель, для процессора фотоаппарата, имеет либо красный, либо зеленый, либо синий цвет и яркость этого цвета.

Эти три цвета являются основными, а все остальные цвета получаются путем смешения основных. Процессор рассчитывает цвет каждого пикселя, анализируя информацию с соседних с ним пикселей.

Расположение фильтров бывает различным, но наиболее распространен так называемый фильтр Баера, когда применяются светофильтры трёх основных цветов в следующем порядке:

Как видите, зеленых ячеек в два раза больше, чем ячеек других цветов. Это связано с особенностями человеческого зрения, наиболее чувствительного именно к зелёной области спектра. Потеря данных в этой области была бы наиболее заметна. В модифицированном фильтре Байера, R G B E , одна из зеленых ячеек заменена светло-голубой (E-изумрудной, англ. emerald ), что даёт лучшую цветопередачу. (технология разработанная SONY ).

Как происходит расчет цвета пикселей.

Допустим есть матрица состоящая из красных, зеленых и синих пикселей:

Теперь фотографируем изображение:

При этом сигнал с матрицы, для процессора будет выглядеть как сигнал от красных, зеленых и синих пикселей с различной яркостью:

После обработки, процессор вычисляет цвет каждого отдельного пикселя, используя информацию о других цветах с соседних ячеек и формирует цифровое изображение:

Как видно на картинке, это изображение получилось более размытым, чем исходное. Такой эффект связан с потерей части информации в результате прохождения света через цветовые фильтры и обработкой изображения процессором. Для исправления размытости процессор фотоаппарата автоматически повышает чёткость изображения. Дополнительно, в этот момент процессор может применить и другие операции: изменить контрастность, яркость, подавлять цифровой шум и т. д. в зависимости от модели аппарата. Многие из этих функций производятся фотоаппаратом автоматически, более дорогие модели имеют возможность дополнительной, ручной корректировки.

Так же существуют матрицы RGBW ( добавлен White — белый) , в них добавлены пиксели не имеющие цветового фильтра, свет попадает на пиксель беспрепятственно и он дает более сильный сигнал (такие матрицы выпускает KODAK).

Использование такого пикселя позволяет получать более яркое изображение в условиях недостаточного освещения, но при этом возможны потери мелких цветовых деталей, т.к. существует области 2х2 пикселя, где есть только два цвета, например белый и синий или белый и зеленый и т.д, что затрудняет корректный расчет цвета.

Разрешение матрицы и печать фотографий.

При печати печати изображения у пикселей появляется физический размер, и именно он и описывается разрешением при печати. Чем больше пикселей на дюйм (англ. — pixels per inch — ppi) будет на распечатке, тем менее заметными будут отдельные пиксели, и тем более реалистичным будет выглядеть отпечаток.

Насколько высоким должно быть разрешение печати, чтобы глаз не различал отдельные пиксели и воспринимал изображение как качественное?

72 ppi — cтандартное разрешение для компьютерных мониторов или отпечатков, разглядываемых издали (например, плакатов). При близком расстоянии пиксели заметны.

150 ppi — достаточно высокое разрешение, чтобы глаз не замечал отдельных пикселей и воспринимал картинку как целое.

300 ppi — фотографическое качество печати. Дальнейшее увеличение разрешения нужно, только если отпечаток будут рассматривать через увеличительное стекло.

Как посчитать?

Для печати фотографии размером 10х15 без потери качества потребуется фотоаппарат с разрешением примерно 2,16 Мпикс = 1800*1200, точнее 2,09 Мпикс=1770*1181 (высота фотографии = 10 см, 10 см делим на 2,54 – столько сантиметров в одном дюйме, получаем 3,937 — столько составляет высота бумаги в дюймах, в один дюйм должно вместиться 300 точек, соответственно 3,937*300 = 1181 ), ширина = 15/2,54*300 = 1770).

В принтерах, д ля разрешения изображения при печати употребляется сокращение dpi (dots per inch — точек на дюйм).

Лазерные и струйные принтеры не способны отобразить все варианты цвета одного пикселя одной точкой на бумаге. Вместо того, чтобы точь-в-точь передавать цвет каждого пикселя, принтер наносит на бумагу комбинацию разноцветных точек, которые с определенного расстояния воспринимаются нами как единое целое. Именно потому, что для печати одного пикселя требуется множество принтерных точек, разрешение принтера и разрешение изображения — это совершенно разные вещи.

Существует простое практическое правило : чтобы вычислить, какое разрешение картинки потребуется для изготовления высококачественного отпечатка, разделите разрешение вашего принтера на четыре. Например, если на принтере указано, что его разрешение — 1200 dpi, максимального качества вы сможете добиться, если пошлете на печать картинку с разрешением 300 ppi.

В цифровых фотолабораториях при печати каждая точка на фотобумаге экспонируется в произвольный цвет и разрешение в точках на дюйм (dpi) соответствует разрешению в (ppi). Поэтому если лаборатория печатает с разрешением 300 dpi, качество отпечатков будет не хуже, чем на принтере с разрешением 1200 dpi.

Прогресс не стоит на месте, а современные принтеры выдают разрешение до 5760х1440 dpi. Какое разрешение фотоаппарата необходимо что бы использовать разрешающую способность такого принтера в полную силу. Для того что бы посчитать какое разрешение фотоаппарата необходимо для печати фотографии с размерами 10х15, необходимо разделить разрешение принтера на 4 (т.к. одна точка не отображает всех оттенков, см . выше). Получим 1440х360, таким образом для печати фото 10х15 потребуется разрешение 5,9*1440=8496, 3,937*360=1417, 8496*1417 = приблизительно 12 МПикс. для печати А4 приблизительно 42 Мпикс.

Выгоды разрешения матрицы.

Чем выше разрешение матрицы тем более четкую и детализированную фотографию вы можете получить. Так же чем выше разрешение матрицы, тем большего размера фотографию вы можете напечатать без потери качества. Для качественной печати фотографии 10х15 см достаточно фотоаппарата с разрешением 2 Мпикс, для печати фото А4 – 10 Мпикс.

Если вы хотите использовать в полную силу возможности современных фото принтеров, то для печати фото 10х15 см вам уже понадобиться фотоаппарат с разрешением матрицы 12Мпкс, а А4 — 42 Мпикс!

Кроме того, то, что вы не планируете печатать большие фотографии сегодня, не говорит о том, что вы не захотите напечатать их завтра, поэтому хорошее разрешение никогда не помешает, но его необходимо всегда учитывать с еще одним параметром — это физический размер матрицы цифрового фотоаппарата.

techseller.ru

Самое большое разрешение матрицы

Размер матрицы имеет большое значение, но вначале поговорим о принципе действия матрицы фотоаппарата, и таких её характеристиках, как разрешение, «шумность» и светочувствительность.

Матрица фотоаппарата

Принцип действия матрицы
Матрица (сенсор, фотодатчик) это устройство фотокамеры, где получается изображение. Собственно, это аналог фотоплёнки, или плёночного кадра. Как и в нём, лучи света, собранные объективом, «рисуют» картинку. Разница в том, что на плёнке эта картинка хранится, а на датчиках матрицы под действием света возникают электрические сигналы, которые обрабатываются процессором камеры, после чего изображение сохраняется в виде файла на карту памяти. Сама матрица фотоаппарата представляет собой специальную микросхему с фотодатчиками-пикселями (фотодиодами). Именно они при попадании света генерируют сигнал, тем больший, чем больше света попадает на этот датчик-пиксель.

В чём принципиальная разница цифровой и плёночной фотографии? Это электроника против химии, скажет один. Цифра против плёнки, добавит другой. Но это не исчерпывающие ответы! Фотоплёнка совмещает место рождения снимка и место его хранения. Матрица фотоаппарата тоже рождает изображение, но не хранит его. Функцию хранения снимков в цифровой фотографии выполняет карта памяти.

Разрешение матрицы
Итак, мы уже выяснили: матрица фотоаппарата состоит из датчиков пикселей. От количества этих пикселей зависит разрешение (детализация изображения), размер будущей фотокарточки и, к сожалению, уровень шумов. Чем больше пикселей, тем выше детализация. Например, на матрице расположены 4928 точек по ширине и 3264 по высоте. Если перемножить ширину на высоту то получим 16 084 992 (примерно 16 миллионов) пикселей. В этом случае говорят «фотокамера имеет 16 мегапикселей», «разрешение сенсора 16 Мп» и т.д. Вот как выглядит матрица фотоаппарата, если снять объектив и поднять зеркало:

Кстати, хранить камеру в таком виде категорически не рекомендую. Если пыль попадёт на матрицу, то это не лучший день в буднях фотографа:)

Что такое шумы

Кто думает что шум — это завывание автомобиля под окнами, или грохот весенней грозы, тот жестоко заблуждается! Цифровые шумы — это аналог плёночной зернистости, а измеряется такой шум отнюдь не в децибелах (как можно подумать:). Кто снимал плёнкой, тот может этот абзац сразу пропустить, ибо на вопрос «что такое шумы» он уже получил ответ! Остальным советую всё же дочитать абзац до конца:)

Так что такое шумы? Это цветные искажения, похожие на разноцветные «крапинки», возникающие при съёмке в условиях сложного освещения. Особенно хорошо шумы заметны на тёмных участках фотоснимка, на заднем плане, на объектах находящихся не в фокусе. Они здорово портят снимок, делая его неестественным и никакие шумодавы, встроенные в камеру не в состоянии побороть это зло. Победа обычно достигается ценой потери детализации и уничтожения плавности цветовых переходов фотографии. Матрица из года в год совершенствуется, алгоритмы шумодавов тоже, а сам цифровой шум как был, так и остался. Причин появления данного дефекта немало: начиная от повышения сигнала на датчиках матрицы (чем меньше матрица и её датчики — тем больше шумов!) и кончая нагревом камеры с длинной выдержкой экспозиции.

Примеры вы, конечно, увидите ниже (я обещаю!), тем более, что пора перейти к главной причине их появления, а точнее — усиления шума. Причина эта — повышение фотографом светочувствительности матрицы, её мы рассмотрим более подробно.

Светочувствительность

Светочувствительность матрицы складывается из светочувствительности всех её фотодатчиков-пикселей. Поскольку фотографы бывают как натуры поэтические, так и технофилы, то дадим сразу два определения светочувствительности:

1. Светочувствительность — чудесное свойство фотографического материала рождать изображение с помощью света.

2. Светочувствительность — это примитивная способность фотодатчиков матрицы генерировать электрический заряд под действием световой составляющей электромагнитного излучения 🙂

Зачем же нужно повышать светочувствительность? Качество снимка — не только (и не столько!) мегапиксели, но и натуральные цвета. А это уже зависит от размеров датчиков-пикселей. Чем больше их собственный размер, тем больше света попадает на датчик, тем чище и естественней будут цвета и меньше цифровые шумы. При слабом освещении выдержка получается длинной и тогда, ввиду угрозы смаза снимка, обычно повышают светочувствительность фотоматериала (светочувствительность обозначают в единицах ISO). В плёночной фотографии для этого меняют плёнку, а цифровая фотокамера проще: ISO меняется в настройках самого фотоаппарата. В мыльницах — только автоматически, в камерах с ручными настройками — либо автоматически, либо задаётся фотографом.

В компактах обычные значения от 50 до 3200-6400 единиц ISO (было до 400 в 2007 г.), в зеркалках, как правило, от 100 до 6400-25600 и даже ещё выше (в 2007 г. было всего 1600). Сегодня это нормальные цифры, которые определены размером и другими характеристиками матрицы — при этом, чем больше размер — тем больше светочувствительность. На бОльшие значения ISO вряд ли стоит серьёзно обращать внимание, разве что только у «совсем топовых» моделях зеркалок. Цифирь растёт, а от шума всё равно никуда не деться: шумела матрица и будет шуметь 🙂

Матрица цифрозеркалок имеет след. типичные значения светочувствительности:

100; 200; 400; 800; 1600; 3200; 6400; 12800; 25600; 51200

а бывают и больше, найдите закономерность и цифровой ряд можно легко продолжить самостоятельно 🙂

Светочувствительность в цифровом фотоаппарате повышают для возможности снимать с более короткой выдержкой (или более прикрытой диафрагмой).

А если говорить проще — при плохом освещении.

. Но какое же ISO фотографу нужно выставлять при съёмке? Если позволяет выдержка, то минимальное.

А если выдержка не позволяет? Вот тогда и приходиться повышать светочувствительность матрицы фотоаппарата. В принципе, ставить по максимальному значению было бы превосходно, если не один очень неприятный момент: с ростом ISO цветных искажений обычно становятся ещё больше.
Вот пример шумов матрицы старинного компакта (2003 г.) в условиях сложного освещения (тёмный коридор, с отсветом тусклой лампочки) на датчиках матрицы размера 1/1.8″» (7.2 х 5.3 мм.) Без применения вспышки было сделано 4 снимка: со светочувствительностью в 50, 100, 200 и 400 единиц (для получения такой же экспозиции выдержка укорачивалась по мере увеличения ISO). Снимки лучше увеличить:

Итак, повысив чувствительность до 400 единиц, нам удалось укоротить выдержку с 2-х до 1/4 сек., т.е. практически в 8 раз! Отлично, не правда ли? Всё хорошо, если не думать о том, что 1/4 тоже недостаточно для съёмки без штатива. Но ведь в других случаях укорачивание выдержки в 8 раз реально поможет, например, с 1/10 до 1/80 сек. Дело сейчас не в этом. Действительно, всё хорошо, если не обращать внимания на шумы. И если на ISO-50 их почти нет, а на 100 они малозаметны, то уже на ISO-200 шумы видны вполне отчётливо. Впрочем, некоторым и это покажется приемлемым, а вот на ISO-400 цветная мозаика становятся неприятной, а для кого то совсем невыносимой. Чтобы ясно представить различие посмотрите увеличенные центральные части снимков на iso-50 и iso-400. Как говорится, почувствуйте разницу!

Конечно, в условиях недостатка света лучше всего увеличивать выдержку, а не ISO. Но как правило, на длительных выдержках возникает шевелёнка (дрожание камеры в руках), а шевелёнка смажет картинку. В нашем примере использовался штатив, и потому на 2 сек. смаза не было. Но штатив не всегда удобно с собой таскать, в результате на мелких датчиках с шумами приходиться мириться, и количество мегапикселей тут ни чем не поможет. Даже наоборот, если нарастить их число на маленькой матрице, то это может привести к сильным шумам даже на чувствительности ISO-50.

Часто можно услышать вопрос: «почему на исо 400 компакт шумит больше, чем зеркалка — ведь исо то одинаковы?». Да, но сенсоры у них не одинаковы: зеркальная фотокамера имеет размер матрицы больше! И сравнивать единицы ISO в этом случае не совсем корректно, здесь можно сравнивать только уровень шума. И когда мы меняем в настройках камеры ISO, то меняем не совсем светочувствительность матрицы (чувствительность ей задана на заводе раз и навсегда!), а лишь уровень электрического сигнала — и, соответственно, шума. Поскольку чувствительность большей матрицы изначально выше, то и соотношение сигнал/шум получаем лучше! Надо учитывать, что с годами матрицы, конечно, совершенствуются, поэтому:

. в более современных моделях либо шумов будет меньше, либо пикселей больше, либо цена ниже. И наоборот:)

По традиции мы будем (для удобства) говорить, что меняем светочувствительность фотоаппарата. Но, какие термины не используй, в любом случае ISO 3200 на компакте критики не выдерживает. 🙂

Давайте теперь посмотрим, как шумит зеркальная фотокамера. В следующих примерах использовалась Pentax K10D, совсем древняя (по цифровым меркам) модель, с максимальным ISO 1600), фотосъёмка велась ночью. Вот 4 снимка — на ISO-100, 400, 800 и 1600. Исо-200 я не включил, оно от 100 почти не отличается. Собственно, на таких маленьких картинках они все почти не отличаются! И здесь практически невозможно сравнить (и даже увидеть!) шумы на снимках показанных в пределах превьюшек 400 х 267 пикселей. Вот где сказывается размер матрицы! Поэтому, чтобы увидеть разницу рекомендую кликнуть по фото и увеличить размер. Смотреть шумы нужно в первую очередь на небе, здесь их легче найти:)

От чего зависят шумы? От размера матрицы и количества мегапикселей, от значения светочувствительности и даже от выдержки. Чем меньше матрица, больше мегапикселей, выше ИСО и длиннее выдержка, тем более заметны цветные вкрапления. Если матрица фотоаппарата сильно нагревается от длительной работы и/или жары, шумы могут стать заметнее, особенно на тёмных участках снимка. Поэтому нельзя говорить, что только одни мегапиксели, или повышенная чувствительность дают сильные шумы — при совпадении благоприятных факторов дефекты от шумов могут быть малозаметны глазу — даже на максимальном ИСО!

В одном из писем мне задали вопрос: «откуда материалы? будьте любезны ссылку в студию!» Но я не библиотекарь — всего лишь делюсь собственным опытом, который привык подтверждать снимками (кстати, тоже своими). Вот 2 фотографии, одна на ИСО 100, другая на ИСО 1600. Зеркальная фотокамера та же самая. Сделаны в светлое время суток при лёгком снегопаде. И короткой выдержке на ISO 100 и — особенно — на ISO 1600. Даже кликнув по снимку и загрузив полноразмерные кадры непросто заметить существенные различия!

Советую щёлкнуть по снимку и затем увеличить его, иначе разницу сразу не понять. без этого фотографии почти неразличимы. Напоминаю, речь идёт о чувствительности ISO-100 против ISO-1600! А что с выдержкой? Нам удалось укоротить её с 1/10 до 1/180 т.е. в 18 раз!! А это уже даёт возможность свободно снимать с рук без штатива с минимальными шумами. Впрочем, здесь мы могли уже на ISO-800 снимать запросто без штатива с выдержкой 1/90 сек, и даже на ИСО 400 с 1/45 сек — для широкого угла такой выдержки обычно хватает.

А вот эксперимент иного рода. Ниже вы видите 2 домашние фотографии. Ничего особенного, одна и та же ёлка, слева снимок без вспышки, справа со вспышкой. Увеличения не сделано, можете не кликать мышью — большой размер посмотрим чуть позже.

На маленьких изображениях никаких деталей не разглядеть, поэтому чуть ниже смотрим их увеличенные центральные части. Ну, что можно сказать? 1 фотография с очень сильными шумами, на второй шумы тоже заметны, но их на порядок меньше. В общем, предполагаем только три варианта. Сейчас автор нам скажет примерно следующее: вот, смотрите, какие разные шумы дают компакт и зеркальная фотокамера на светочувствительности матрицы в 400 единиц. А, возможно, и наоборот: сделано одной и той же камерой, но с разными ИСО. Или разными камерами с разными настройками:) Какой вариант более правильный?


На самом деле оба снимка сделаны одной и той же зеркальной фотокамерой и. с одинаковым iso! Мало того и выдержки не длинные, причём они вполне сопоставимы, 1/30 и 1/45 сек. Почему же такая разница в шумах? Всё дело заключается в освещении. На светлых участках фотографии шумов, как правило, меньше, а на тёмных — больше. Да, кстати, на обоих снимках светочувствительность 1600 единиц ИСО! Смотрим полный размер (при этом следует помнить, что цвет занавесок был изначально белым, да и после фотосъёмки он не пострадал)!

Вывод прост. Даже на одной и той же фотокамере (с одной и той же матрицей), один и тот же сюжет, снятый на одинаковой светочувствительности, может дать количество цветовых дефектов — шумов — совершенно разное!

Теперь мы видим, сколько много факторов влияет на шумы в цифровом фотоаппарате, кроме размера матрицы, до которого мы ещё доберёмся. А сколько рождается мифов и домыслов при сравнении снимков разных фотокамер на одинаковой светочувствительности, чтобы определить — какая из них меньше шумит!

Вот когда на форумах утверждают, что зеркалка фирмы А шумит больше зеркалки фирмы Б, то смех берёт, особенно если фотокамеры (и их матрица!) одной ценовой категории и года выпуска. Видимо, эти люди накупили объективов разных фирм, затем, время от времени, покупают самые последние зеркалки разных производителей, и тестируют их в одних и тех же условиях, чтобы доказать: моя камера (и фирма!) лучше всех. Ничего не поделаешь — это фоторелигия! Покажите эти незатейливые снимки спорящим до хрипоты, примирите их греховные страсти и развейте заблуждения во избежание религиозного кровопролития 🙂

Однако в случае появления новых фотокамер (точнее новых матриц!) качество снимка на больших ИСО может действительно улучшиться.

Со временем технологии развиваются, матрицы совершенствуются, реки текут, сады цветут, а шумов становится меньше. Их было бы ещё меньше, если производитель попутно не наращивал количество мегапикселей (датчиков)! Это возможно только за счёт уменьшения собственных размеров этих датчиков — чтобы последние уместились на матрице. Это вроде нормально, цветопередача не становится хуже (иногда и лучше), а взамен мы получаем возможность увеличивать картинку. Правда, не совсем понятно, для чего пользователю нужна матрица, скажем в 20 Мп. Я не поверю, что все печатают огромные плакаты, большинство вообще ничего не печатает!

Приведу снимок сделанный Pentax K5-II, камера выпущена в 2012 году на матрице высокой чувствительности. Данная матрица и сейчас неплохо смотрится по фотошироте и уровню шумов при высоких ISO. Если бы не нарастили количество датчиков, уменьшив их размер — шумов было ещё меньше, а счастья больше!

ИСО 3200, матрица о 16 головах миллионах датчиков
размер изображения 4928 х 3264

Но смысл есть даже в таком решении. В метро освещение всегда отвратительное, люди двигаются умом и толкаются, а снимок сделан с рук, без штатива. За счёт высокой ИСО удалось добиться выдержки 1/50 сек. Шумы на 3200, конечно, есть, но, если не печатать полным размером, их будет почти не видно, а на карточке 10х15 см их даже гурман не разглядит. Знаете, есть такая каста гурманов, которые считаются большими знатоками и ценителями фотографии по наличию отсутствия шумов, или присутствию их наличия 🙂

Я намеренно привёл снимок сделанный в боевых условиях, а не при студийном свете, которым иные авторы пользуются (вот странно!) при тестировании матрицы фотоаппаратов на шумы — в своих на редкость непредвзятых обзорах 🙂

При правильно выбранном освещении результаты будут, конечно, лучше. Даже при обычном дневном свете шумы могут оставлять благостное ощущение вседозволенности от «ненужности» вспышки и штатива. Смотрим полноразмерные кадры (7 Мб), сделанные вышеуказанным фотоаппаратом на ISO 3200 и 12800. Съёмка с рук, вспышка отключена, фокусировка по «глазу». Фото следует увеличить, чтобы разглядеть шумы. Легче всего их найти на фоне 🙂

Светочувствительность 3200

Светочувствительность 12800

Вообще то матрица данного фотоаппарата имеет максимальную чувствительность 51200, но я не хочу пугать читателя грязью на картинах, от чего ощущение вседозволенности плавно перетекает в унылую безысходность и даже чувство собственной неполноценности 🙂

По жизни уныние лéчится только водкой психиатрами ответственностью за тех, кого приручили (а мы пытаемся приручить фотографию). И вот, не взирая на огромные цифры чувствительности, возникает странное желание поставить самое низкое ISO и побороть длинную выдержку — применив штатив, вспышку, или иное освещение. Зачем нам матрица о 16 мегапикселях (их бывает гораздо больше) и грязные картины?

Хуже всего, когда мегапиксели наращивают в «новом» фотоаппарате на старой матрице, и делается это сугубо для мирового зла — маркетинга. Ну, это когда обманывают потребителя по закону 🙂

Теперь давайте посмотрим шумы от полнокадрового фотоаппарата Canon EOS 6D, матрица КМОП 35,8 х 23,9 мм, снимки предоставлены фотолюбителем из Красноярского края. Съёмка с рук без штатива.

Увеличив фото, мы видим, что ISO 6400 вполне рабочее, а шумы на 1600 и вовсе незаметны. Даже на ISO 25600 вполне можно печатать фотографии небольшого размера (скажем 10 х 15 см), поскольку чем меньше размер отпечатка, тем меньше видны дефекты на нём.

Смотреть шумы дело, конечно, увлекательное, но не стоит впадать в восторг, особенно если сравнить фотографии зеркалки и компакта. Да, зеркальная фотокамера шумит на ISO-800 меньше, чем компакт на ISO-400. Но не следует забывать 2 вещи:
1. все снимки компакта и зеркалки (кроме последних примеров) я делал со штатива — в этом случае ничто не мешает снимать компактом на минимальном ИСО с минимальными шумами.
2. ценность снимка определяется в первую очередь содержанием, а не техническим качеством 🙂

Кстати, не следует упрекать автора некачественными и грязными от шумов фотографиями 🙂 Они лишь демонстрируют то, о чём идёт речь, а она идёт про размер и светочувствительность матрицы.

Размер матрицы

Размер имеет значение:) Причём очень большое — это один из главных параметров цифровой фотокамеры. Тот самый который почему то не любят указывать производители. Размер матрицы складывается из размеров датчиков-пикселей и расстояния между ними. Именно от этих показателей в первую очередь зависит разрешение изображения, количество шумов, глубина резкости. Всё крайне важно для фотографа: любит он высокую детализацию, не жалует шумы и хочет иметь шикарную возможность менять диафрагмой глубину резкости. Последнее напрямую зависит от размера фотосенсора:

. Чем больше размер матрицы в фотоаппарате — тем меньше глубина резкости на снимке!

Перевожу фразу на русский: мыльницы и компакты дают резкость от пупа до самого горизонта (и это хорошо!), а зеркалкой можно реально регулировать ГРИП, выделяя главный объект съёмки — что ещё лучше 🙂 Размер матрицы говорит и об этом, и о габаритах самих фотокамер: у зеркалок вес и габариты больше.

Понятно, что большая матрица имеет более крупные пиксели, чем маленькая, если количество пикселей осталось прежнее. Перед нами условная схема 2-х матриц, первая от цифрокомпакта с не самой маленькой матрицей 7.2 x 5.3 mm (обозначение 1/1.8″), вторая от зеркальной камеры 23.7 x 15.6 mm (обозначение «APS-C» — Advanced Photo System type-C). На самом деле количество квадратиков-пикселей в реальных камерах гораздо больше, (например, 16 миллионов, а не 48 как здесь), но соотношения сторон на схеме для наглядности выполнены достаточно точно.

При одинаковой пиксельности (здесь, например, у обоих матриц 48 квадратиков-пикселей), площадь каждого пикселя у крупной матрицы больше, и соответственно, светочувствительность и цветопередача у зеркалки куда лучше (а шумов меньше!). Увеличить количество пикселей можно двумя способами — увеличить размер матрицы, а можно, наоборот, уменьшить площадь самих «квадратиков», чтобы их больше уместилось на прежнем размере матрицы. Первый путь дорогой, второй дешевле, так как не нужно увеличивать саму матрицу. Догадайтесь, по какому пути пройдёт производитель, чтобы гордо заявить: в нашей камере теперь не 10, а целых 20 мегапикселей!

Больше мегапикселей для детализации снимка, конечно, хорошо, а вот то, что при этом уменьшилась площадь каждого сенсора — очень плохо. В итоге народ вовсю скупает маркетинговые мегапиксели, никак не задумываясь об их происхождении. Вот примеры подобных матриц в 48 клеток и 192 клетки (мегапикселей стало в 4 раза больше!):

Понятно, что на второй схеме количество мегапикселей нарастили, уменьшив площадь каждого из них. А как ещё, если матрица осталась прежнего размера! И вот уже появляются компакты с 12 и даже с 16 Мп, превосходя в этом даже иные зеркалки. Например, зеркальная камера Nikon D50 имела всего 6 Мп — а этого хватало за глаза и за уши, если не печатать больших плакатов!

Цифровые камеры давно уже перешагнули «порог качества» по мегапиксельности. Раньше камера в 2 мегапикселя считалась профессиональной, а в 1 Мп — любительской, и этого одного мегапикселя явно не хватало для хорошей детализации. Но проблема давно ушла в небытие, а если говорить по большому счёту, то количество пресловутых мегапикселей теперь уже вообще не важно. Это количество давно уже стало избыточным даже в мыльницах. Зато появились другие проблемы! Наращивание избыточной детализации используется теперь больше в маркетинговых целях, а не для реального повышения качества.

Хитрые продавцы, а иногда и производители почти никогда не указывают размеры матриц в миллиметрах, используя вместо них непонятные обозначения в т.н. «видиконовых» дюймах, например 1/2.5″, или 1/1.8″. Смысл этих «попугаев» в том, что чем больше число в знаменателе, тем меньше матрица, что окончательно сбивает с толку неискушённого покупателя. Особенно того, кто прогуливал дроби на школьных уроках по математике 🙂 На подсознательном уровне человек всегда страшиться непонятного, и окончательно запутавшись, он уже готов заглотить любую наживку продавца. И про понятные всем мегапиксели — чем больше, тем круче, и про цену — чем дороже, тем престижней, и про дизайн — «в новом модном корпусе оригинального цвета для стильных и успешных», и прочий бред. Ну а кривая роста психических заболеваний поднимается всё выше и выше, безмерно радуя, почему-то, лишь частных психиатров 🙂

На самом деле в этих путанных цифрах ничего страшного нет: прежде чем идти в магазин нужно найти нужную информацию на самом правильном сайте и подробно ознакомиться с ней 🙂 Как же найти самый правильный фотосайт? Не буду из ложной скромности отсылать вас на поиск в гуглы, яндексы и прочие рамблеры с запросом «размер матрицы фотоаппарата», поэтому можно спокойно продолжать читать далее 🙂
Чтобы понять эти дюймовые обозначения, достаточно увидеть в таблице соответствующие размеры в миллиметрах. Самый большая матрица (в 35-мм фотоаппаратах) называется полнокадровой, она имеет размер сенсора 36×24 мм.

Повторюсь: совсем не обязательно помнить и держать в голове все эти сведения. Достаточно просто понимать, что число 1/1.8 больше, чем, скажем, 1/3, но значительно меньше размера APS-C. Здесь даже калькулятор не потребуется 🙂

Чтобы лучше представить эти дюймы, миллиметры, кропы и прочие цифроразмеры, смотрим картинку, наглядно изображающую соотношение размеров зеркальных и компактных фотокамер. Матрицы в мыльницах, как правило, имеют размер от 1/3″ до 1/2″ (самое «ходовое» и минимальное сейчас значение 1/2.3), в более дорогих и продвинутых цифрокомпактах от 1/1.8″ и более. Это, конечно, весьма условное деление, но лучше сравнивать фотокамеры по размеру матрицы, нежели по мегапикселям. Большой прямоугольник показывает самый крупный размер, который бывает в 35-мм формате. Синий прямоугольник поменьше расскажет о кропнутых зеркалках, зёлёный — о формате 4/3, а самые маленькие 3 квадратика — это матрицы разного класса цифрокомпактов и мыльниц. Буква k означает кроп-фактор. Т.е. во сколько раз данная матрица меньше полного кадра.

Вам не надо учить все эти цифры наизусть, достаточно иметь примерное представление о том, что покупаете. Вот и посмотрите наглядно, какая реальная чувствительность (а не единицы ISO) вас ждут, какие будут шумы и каков вес с габаритами 🙂 На больших датчиках меньше глубина резкости, нежели на малых, а значит легче добиться эффекта размытия заднего плана — почувствуйте это! И на большом размере матрицы объектив, поставленный на фотоаппарат, будет более широкоуголен, чем поставленный на обрезок APS-C («обрезанный» полный кадр), а на обрезке — станет более длиннофокусным — прочувствуйте и сей факт! Да! Пропорции прямоугольников говорят именно об этом, а не только о кропах, пикселях, размерах матриц и прочей, далёкой от фотоискусства и творчества дребедени информации.

Кстати, эти прямоугольники говорят и о стоимости тоже! Когда авторитетно рассказывают, что цена зеркалки упала до размеров топовых компактов, то забывают сказать что это самая дешёвая зеркалка из любительского класса, и при этом не упоминают о разнице в цене топовых зеркалок и мыльниц нижнего диапазона за 2-3 тысячи рублей — а разница эта огромна 🙂 В общем, смотрите и сравнивайте сами!

Меньше всего матрица в фотокамерах мобильных телефонах. Вот образчик рекламы от фотокамеры мобильника Тошибы:

«Toshiba объявила о том, что она обновила и расширила модельный ряд ПЗС матриц Dynastron для встраивания в мобильные телефоны и коммуникаторы. Две новые модели, 3,2-мегапиксельный сенсор ET8EE6-AS и 2-мегапиксельный ET8EF2-AS — существенный прогресс в уменьшении размеров ПЗС матриц для мобильных телефонов и прочих устройств, снабженных фотокамерой. Обе новые модели ПЗС матриц представляют собой существенный шаг вперёд в области миниатюризации при сохранении высокого разрешения. Сенсор ET8EE6-AS представляет собой 3.2-мегапиксельную ПЗС матрицу размером 1/3.2 оптического формата, превосходя предыдущее достижение компании — размер формата в 1/2.6 дюйма.»
Кстати, уже появился ещё меньший формат — 1/4 дюйма.

Вот так — «существенный прогресс в уменьшении размеров ПЗС матриц»! Впрочем, для мобильных телефонов это актуально, громоздкий мобильный телефон никому не нужен, а фото в нём — необязательная дополнительная фишка. Мобильный телефон должен быть действительно мобильным! Но у нас речь идёт про фотокамеру — а в ней чем больше матрица, тем больше габариты и вес аппарата. Это естественно. А хороша ли маленькая камера? Кому как. Многим нравиться фотик, которое помещается в нагрудный карман. Однако, большой размер не все считают недостатком. Вес и ухватистость камеры обеспечивают её лучшее удержание в руках, в итоге меньше шевелёнка. Согласитесь, что держать двумя руками маленький фотоаппаратик неудобно, а одной надо и держать, и кнопку пуск нажимать — колебание камеры (и смаз снимка!) почти обеспечены. Что важнее? Ответ может быть таким: это всё таки фотоаппарат, а не мобильный телефон!

Куда больший размер имеют матрицы в зеркалках. На рисунках ниже мы можем сравнить размеры матрицы компактов и зеркальных фотоаппаратов. Зеркальная фотокамера укомплектована, в основном, матрицей формата «APS-C», которая имеет размер 22.7 х 15.1, или 23.7 х 15.6 мм.

1/3.2″ 1/2.7″ 1/2.5″ 1/1.8″ 2/3″

Компакты и мыльницы имеют малый размер, вес и приемлемую цену. Это их основное, главное и, пожалуй, единственное преимущество 🙂

Матрица у таких зеркалок куда больше, чем у компактов, но, тем не менее, эти зеркалки называют «фотокамера с кропнутой матрицей», камера с урезанным сенсором и даже обрезок. Вы думаете матрицу «обрезали» чтобы уменьшить размер фотоаппарата, или сделать его дешевле? Нет, это просто попытка удешевить производство, а цену продаж оставить на том же уровне 🙂 В общем, матрицы сделали меньшего размера чем плёночный кадр. На картинках изображён сенсор формата 4/3 (в основном это зеркалки Олимпус), а рядом формат APS-C — Nikon D50, Canon EOS 400D, Pentax K10D и многие другие. Первые в 2 раза мельче полнокадровых матриц, APS-C — меньше в 1.5-1.6 раза. Увы, такие фотокамеры меньше габаритами почему то не стали, чем плёночные зеркалки! Что ещё? Для камер APS-C нередко выпускают «цифровой» объектив с меньшей световой площадью покрытия, но можно использовать и старую «плёночную» оптику — если позволяет байонет (стыковочное крепление объектива с фотокамерой). При этом следует помнить — используя неавтофокусные объективы, придётся фокусироваться вручную.

зеркалки полнокадровые 36×24 мм

Больший сенсор имеют, как правило, очень дорогие профессиональные фотокамеры, у них размер матрицы — как у плёночного кадра: 36 х 24 мм. Интересно, что выпускать их начали позже цифромыльниц и ещё позже обрезанных цифрозеркалок. Для матриц с большей площадью требуется объектив, покрывающий эту площадь, в данном случае полнокадровый (например, плёночная оптика). А вот наоборот не выйдет 🙂 Т.е. маленький объектив для кропнутых фотокамер на полноразмерной матрице использовать нельзя.

Мне часто задают вопрос: что происходит, когда в настройках фотоаппарата выбираем для съёмки меньшее количество мегапикселей. Улучшим ли тем самым качество изображения?

Разумеется, нет! Реальный размер матрицы (и каждого пикселя-датчика) от этого не увеличатся, даже не думайте. Вы просто уменьшаете настройками камеры количество точек ИЗОБРАЖЕНИЯ в файле (как в графическом редакторе на компьютере), а заодно потеряете возможность кадрирования или увеличения фотографии.
Взамен получите маленький размер файла, экономию места на карте памяти, а значит, возможность наснимать ещё больше — так много, чтобы вообще ни о чём не думать 🙂

Если ваше кредо в фотографии — как можно чаще жать кнопку затвора и получать большее количество взамен качества, то эта чудная функция создана именно для вас!

Итак, подведём итоги. Чем больше матрица, тем больше возможностей у камеры, как по цветопередаче, как по разрешению, так и по размерам печатного оттиска. Цена фотоаппарата в очень значительной степени зависит от матрицы.

Тип матриц

Под конец заметим, что фотоматрицы различаются не только по размерам, но и по типам. Бывают следующие типы:
— ПЗС-матрицы (CCD). Прибор с зарядовой связью, использующий светочувствительные фотодиоды. ПЗС был изобретен в 1969 г. и первоначально использовался как устройство памяти, но способность устройства получить заряд благодаря фотоэлектрическому эффекту, сделала применение ПЗС основным именно в этом направлении. ПЗС-матрицу выпускают и используют многие ведущие производители, особенно много здесь поработала компания Sony.
— КМОП-матрицы (CMOS). Эта технология использует транзисторы и отличается малым энергопотреблением. Микросхемы КМОП были выпущены ещё в 1968 году и вначале нашли применение в калькуляторах, электронных часах, и вообще в тех устройствах, где энергопотребление было критичным.
— Live-MOS матрица. Имеет возможность «живого» просмотра изображения. Активно разрабатывается компанией Панасоник, в зеркалках впервые была применена Олимпусом в 2006 г. (фотокамера Olympus E-330). В 2009 году зеркальные цифровые фотокамеры с возможностью визирования по ЖК-экрану имеют практически все крупные производители. В технических характеристиках эта возможность обычно называется «Live View».
Есть и другие, например, DX-матрица, Nikon RGB-матрица и иные виды фотосенсоров.

К тому же матрицы различаются по технологии получения цвета. Сам по себе датчик не воспринимает цвет, получая изображение с оттенками серого (больше света/меньше света), а для получения цветов используются цветофильтры. Например:
— матрицы с фильтром Байера
— матрицы Foveon X3
— 3CCD. Эта технология делит свет по спектру с помощью специальных призм на красный, зелёный и синий. Причём каждый из них направляется на отдельную матрицу (всем хороша система, кроме одного — больших габаритов!)

Чтобы достигать более яркого изображения с низким уровнем шума матрицы постоянно развиваются. Большинство технологических решений связано с уменьшением неиспользуемой поверхности датчика, оптимизацией управляющих сигналов и разработкой низкошумящих усилителей. Однако не следует боятся того, что скоро фотографы начнут запросто снимать мыльницей в кромешной тьме. Чтобы никто сильно не боялся, фирмы внедряют новые технологии очень постепенно, или вообще не внедряют и держат в секрете до тех пор, пока не высосут из потребителя все деньги за старые 🙂 И совсем не смешно преступно, когда эта история касается не фототехники, а лекарств для умирающих от рака.

Мы не будем более подробно рассматривать типы датчиков их различия и различия цветофильтров. Это может быть очень важно производителям матриц и их технарям, но никак не фотографам, потому что на самих снимках никакой разницы заметно не будет. Я бы посоветовал фотолюбителям уделять больше внимания для видения (в первую очередь глазами!) интересных сюжетов и красивых ракурсов съёмки. Всё таки этот сайт задумывался для помощи начинающим фотографам, а не технарям!

64bita.ru