Третий закон логики примеры

Закон исключённого третьего

Закон исключённого третьего — это один из основных общелогических принципов, согласно которому в процессе рассуждения всякое суждение или истинно, или ложно. Данный закон устанавливает связь между противоречащими друг другу осмысленными высказываниями (в рассуждении, в тексте или теории): одно (и только одно) из них истинно, другое ложно. Относится к четырём так называемым основополагающим логическим законам — закону тождества, закону противоречия, закону исключённого третьего и закону достаточного основания (см. Законы логики), которые подразумевают наиболее общие принципы (или постулаты) теоретического мышления и используются при оперировании понятиями и суждениями, в умозаключениях, доказательствах и опровержениях, и поэтому присутствуют практически во всех логических системах.

Закон исключённого третьего подразумевает, что если истинно A, то не истинно — не-A, либо наоборот, неистинно A и истинно не-A. Здесь буква A обозначает произвольное высказывание. Символически закон выражается формулой:

Третьего не дано, как не дано ещё какого-либо B, которое претендовало бы на выражение истины. Таким образом, само название закона выражает его смысл: дело обстоит так, как говорится в рассматриваемом высказывании, или так, как говорится в его отрицании, и никакой третьей возможности нет.

Закон исключённого третьего непосредственно связан с законом противоречия (см. Закон противоречия), согласно которому два взаимно противоречащих высказывания не могут быть истинными в одно и то же время и в одном и том же отношении (то есть одно из них должно быть ложным). Оба эти закона были впервые сформулированы Аристотелем в его «Метафизике» (IV, 8); в применении к атрибутивным высказываниям вида «B есть C» они рассматривались также в его «Аналитиках». Впоследствии эти законы наряду с законом тождества («A есть A») были приняты схоластами в качестве основных законов логики. Оригинальная формулировка Аристотеля: «Оба утверждения A и не-A не могут быть одновременно ложны». Наряду с этим, в «Метафизике» встречается (не как закон, а как способ рассуждения) другая формулировка, в настоящее время более употребимая: «Одно из утверждений A или не-A должно быть истинным». Эта формулировка известна как сильный закон исключённого третьего и получила в схоластической логике название tertium non datur.

Аристотель указал также границы применимости tertium non datur, рассмотрев пример неопределённого высказывания: «Завтра будет морское сражение», которое сегодня не истинно и не ложно. Данный пример можно представить в следующем виде:

    Предположим, сегодня истинно, что завтра будет морское сражение. Из этого следует, что не может быть, чтобы завтра не было морского сражения. Следовательно, необходимо, чтобы завтра морское сражение произошло. Подобно этому тезису, если сегодня ложно, что завтра будет морское сражение, то необходимо, чтобы морское сражение завтра не произошло. Но высказывание о том, что завтра произойдёт морское сражение, сегодня истинно или ложно (логический принцип двузначности, в соответствии с которым всякое высказывание является либо истинным, либо ложным, то есть принимает одно из двух возможных истинностных значений — «истинно» и «ложно»). Принцип двузначности предлагает нам выбрать одну из этих двух альтернатив как верную, то есть или необходимо, чтобы морское сражение завтра произошло, или необходимо, чтобы оно завтра не произошло. В самом деле, если сегодня высказано «Завтра будет морское сражение или завтра не будет морского сражения», то это высказывание будет неопределённым, если неопределённы образующие его части. Но утверждение «Завтра будет морское сражение или неверно, что завтра будет морское сражение» будет истинно: если высказывание «Завтра будет морское сражение» неопределённо, то высказывание «Неверно, что завтра будет морское сражение» истинно.

Аристотель считал, что закон исключённого третьего следует ограничить высказываниями о прошлом и настоящем и не прилагать его к высказываниям о неопределённых будущих событиях, то есть к таким, наступление которых в настоящий момент ещё не предопределено, поскольку нет причины ни для того, чтобы они произошли, ни для того, чтобы они не случились.

От Аристотеля идёт традиция давать закону исключённого третьего три разные интерпретации:

  • Логическая интерпретация. Закон понимается как принцип логики о высказываниях и их истинности: или высказывание, или его отрицание должно быть истинным.
  • Онтологическая интерпретация. Закон понимается как утверждение об устройстве мира: всякий объект или реально существует, или не существует.
  • Методологическая интерпретация. Закон понимается как принцип методологии научного познания: исследование каждого объекта должно вестись до тех пор и быть настолько полным, чтобы относительно каждого утверждения об этом объекте можно было решить, истинно оно или нет.
  • Закон исключённого третьего содержит в себе следующие предписания:

    1. Устанавливается альтернативность A и не-A и предлагается сделать выбор между ними по истинностному признаку.
    2. Запрещается выбирать в качестве альтернативы ещё какие-либо суждения.
    3. Устанавливается отношение контрарности (противоположности) между альтернативами таким образом, что одна из них является отрицанием другой.
    4. Трактуется универсальный приём логического мышления, согласно которому противоположное истине есть ложь.
    5. На языке математической логики сильный закон исключённого третьего выражается формулой A ⋁ ¬A, которая часто подменяет его в современных математизированных работах и называется математическим законом исключённого третьего. Но последний не эквивалентен ни сильному закону исключённого третьего, ни аристотелеву закону. В частности, в алгебраической интерпретации со значениями в булевой алгебре выполнены все законы классической логики, но как A, так и ¬A могут быть неистинны. Сильный закон исключённого третьего математически означает полноту используемой теории, что практически недостижимо. Так, в случае рассуждений о бесконечных и неопределённых совокупностях объектов, об изменяющихся, текущих и тому подобных состояниях изучение объекта не всегда способно достичь такой полноты, чтобы на любой вопрос о нём удалось ответить однозначно «да» или «нет».

      Сильный закон исключённого третьего оказался тем критическими местом, вокруг которого развивались дискуссии в течение всего времени существования логики как науки. Стоики и эпикурейцы рассматривали логики, несовместимые с законом исключённого третьего (как правило, не замечая разницы между его сильной и формулировкой Аристотеля). Интуиционизм начинался с утверждения о недостоверности сильного закона исключённого третьего, но он опровергает его достаточно тонко, сохраняя слабый закон исключённого третьего и придавая ему точную математическую формулировку: ¬¬ (A ⋁ ¬A), не вводя дополнительных логических значений. Эту формулировку ввёл Л. Брауэр в рамках критики применимости законов классической логики в математике (1908). Впоследствии её назвали брауэровым законом исключённого третьего. Брауэр был убеждён, что логические законы не являются абсолютными истинами, не зависящими от того, к чему они прилагаются. Возражая против закона исключённого третьего, он настаивал на том, что кроме утверждения и его отрицания имеется ещё третья возможность, которую нельзя исключить: она обнаруживает себя при рассуждениях о бесконечных множествах объектов. Ограничение Брауэром сферы действия этого закона существенно сужало круг тех способов рассуждения, которые применимы в математике и это сразу же вызвало резкую оппозицию многих математиков. Первое формальное доказательство брауэрова закона дал В. И. Гливенко (1928). Критика Брауэром закона исключённого третьего положила начало новому направлению в формальной логике (см. Логика формальная) — интуиционистской логике. В ней не принимается данный закон и отбрасываются все те способы рассуждения, которые с ним связаны.

      В целом, закон исключённого третьего представляется теперь спорным законом логики, более того, в некоторых рассуждениях его следует считать ложным. Общая критика закона (в его сильной форме) сводится к следующим положениям. Он применим для рассмотрения терминов в фиксированной обстановке с фиксированной точки зрения. Он не подходит для меняющейся обстановки и субъективных понятий. Он не допустим даже для терминов, если исследователя интересует не просто доказательство, а построение. Тем не менее, во всех указанных случаях иногда его использование корректно и весьма эффективно, но требует дополнительных обоснований.

      gtmarket.ru

      Третий закон логики примеры

      3. ЗАКОН ИСКЛЮЧЁННОГО ТРЕТЬЕГО

      Закон исключённого третьего, как и закон противоречия, устанавливает связь между противоречащими друг другу высказываниями. Он утверждает: из двух противоречащих высказываний одно является истинным.

      А или не-А. Например: «Аристотель умер в 322 г. до н.э. или он не умер в этом году», «Личинки мух имеют голову или не имеют её» и т.п. Само название закона выражает его смысл: дело обстоит так, как говорится в рассматриваемом высказывании, или так, как говорится в его отрицании, и никакой третьей возможности нет.

      Как выразил эту мысль Аристотель: «…Не может быть ничего промежуточного между двумя членами противоречия, а относительно чего-то одного необходимо что бы то ни было одно либо утверждать, либо отрицать».

      Человек говорит прозой или не говорит прозой, кто-то рыдает’ или не рыдает, собака выполняет команду или не выполняет её и т.п. — других вариантов не существует. Мы можем не знать, противоречива некоторая теория или нет, но на основе закона исключённого третьего ещё до начала исследования мы вправе заявить: она или непротиворечива или противоречива.

      Этот закон с иронией обыгрывается в художественной литературе. Причина иронии понятна: сказать «Нечто есть или его нет», значит, ровным счётом ничего не сказать, и смешно, если кто-то этого не знает.

      В «Мещанине во дворянстве» Ж.-Б.Мольера есть такой диалог:

      Г-н Журден. …А теперь я должен открыть вам секрет. Я влюблён в одну великосветскую даму, и мне хотелось бы, чтобы вы помогли написать ей записочку, которую я собираюсь уронить к её ногам.

      Учитель философии. Конечно, вы хотите написать ей стихи?

      Г-н Журден. Нет, нет, только не стихи.

      Учитель философии. Вы предпочитаете прозу?

      Г-н Журден. Нет, я не хочу ни прозы, ни стихов.

      Учитель философии. Так нельзя: или то, или другое.

      Г-н Журден. Почему?

      Учитель философии. По той причине, сударь, что мы можем излагать свои мысли не иначе, как прозой или стихами.

      Г-н Журден. Не иначе, как прозой или стихами?

      Учитель философии. Не иначе, сударь. Все, что не проза, то стихи, а что не стихи, то проза.

      В известной сказке Л.Кэролла Белый Рыцарь намерен спеть Алисе «очень, очень красивую песню»:

      — Когда я её пою, все рыдают… или…

      — Или что? — спросила Алиса, не понимая, почему Рыцарь вдруг остановился.

      В другой популярной сказке народный лекарь Богомол заключает после осмотра Буратино:

      — Одно из двух: или пациент жив, или он умер. Если он жив — он останется жив или не останется жив. Если он мёртв — его можно оживать или нельзя оживить.

      Это напоминает ситуацию из старой песенки, в которой тоже используется идея исключительного третьего:

      Жила одна старушка,

      И, если не скончалась —

      Закон исключённого третьего кажется самоочевидным. Тем не менее высказывались предложения отказаться от него или ограничить его действие применительно к определённым высказываниям.

      В частности, Аристотель сомневался в приложимости этого закона к высказываниям о будущих событиях. В настоящий момент наступление некоторых из них ещё не предопределено. Нет причины ни для того, чтобы они произошли, ни для того, чтобы они не случились. «Через сто лет в этот же день будет идти дождь» — это высказывание сейчас, скорее всего, ни истинно, ни ложно. Таким же является его отрицание. Но закон исключённого третьего утверждает, что или само высказывание, или его отрицание истинно. Значит, заключает Аристотель, хотя и без особой уверенности, данный закон следует ограничить одними высказываниями о прошлом и настоящем и не прилагать его к высказываниям о будущем.

      Немецкий философ Гегель весьма иронично отзывался как о законе противоречия, так и о законе исключённого третьего. Последний он представлял, в частности, в такой форме: дух является зелёным или не является зелёным, и задавал каверзный, как ему казалось, вопрос: какое из этих двух утверждений истинно?

      Ответ на этот вопрос не представляет, однако, труда. Ни одно из двух утверждений: «Дух — зелёный» и «Дух — не зелёный» не является истинным, поскольку оба они бессмысленные. Закон исключённого третьего приложим только к осмысленным высказываниям. Только они могут быть истинными или ложными. Бессмысленное же не истинно и не ложно.

      Резкой, но хорошо обоснованной критике подверг закон исключённого третьего голландский математик Л. Брауэр. В начале этого века он опубликовал три статьи, в которых выразил сомнение в неограниченной приложимости законов логики и прежде всего — закона исключённого третьего. Первая статья не превышала трех страниц, вторая — четырех, а вместе они не занимали и семнадцати страниц. Но впечатление, произведённое ими, было чрезвычайно сильным.

      Брауэр был убеждён, что логические законы не являются абсолютными истинами, не зависящими от того, к чему они прилагаются. Возражая против закона исключённого третьего, он настаивал на том, что кроме утверждения и его отрицания имеется ещё третья возможность, которую нельзя исключить. Она обнаруживает себя при рассуждениях о бесконечных множествах объектов.

      Допустим, что утверждается существование объекта с определённым свойством. Если множество, в которое входит этот объект, конечно, то можно перебрать все объекты. Это позволит выяснить, какое из следующих двух утверждений истинно: «В данном множестве есть объект с указанным свойством» или же «В этом множестве нет такого объекта». Закон исключённого третьего здесь справедлив.

      Но когда множество бесконечно, объекты его невозможно перебрать. Если в процессе перебора будет найден объект с требуемым свойством, первое из указанных утверждений подтвердится. Но если найти этот объект не удастся, ни о первом, ни о втором из утверждений нельзя ничего сказать, поскольку перебор не проведён до конца. Закон исключённого третьего здесь не действует: ни утверждение о существовании объекта с заданным свойством, ни отрицание этого утверждения не является истинным.

      Ограничение Брауэром сферы действия этого закона существенно сужало круг тех способов рассуждения, которые применимы в математике. Это сразу же вызвало резкую оппозицию многих математиков, особенно старшего поколения. «Изъять из математики принцип исключённого третьего, — заявлял немецкий математик Д. Гильберт, — все равно, что запретить боксёру пользоваться кулаками.

      Критика Брауэром закона исключённого третьего привела к созданию нового направления в логике — так называемой интуиционистской логики. В последней не принимается данный закон и отбрасываются все те способы рассуждения, которые с ним связаны. Среди них — доказательства путём приведения к противоречию, или абсурду.

      С законом исключённого третьего косвенно связан следующий методологический принцип: анализ каждого объекта должен вестись до тех пор и быть настолько полным, чтобы относительно любого утверждения об этом объекте можно было решить, истинно оно или нет. Это требование полноты и всесторонности исследования не относится, конечно, к законам логики. Оно полезно, но нередко оказывается невыполнимым. В случае рассуждений о бесконечных и неопределённых совокупностях объектов, об изменяющихся, текущих состояниях и т.п. изучение объекта не всегда способно достичь такой полноты, чтобы на любой вопрос о нем удалось ответить однозначно «да» или «нет».

      www.e-reading.club

      Основные законы логики. Закон тождества. Закон непротиворечия. Закон исключенного третьего. Закон достаточного основания.

      Основные законы логики.
      В логике можно выделить четыре основных закона, которые выражают коренные свойства логического мышления – его определенность, непротиворечивость, последовательность, обоснованность. К данным законам относятся: закон тождества, непротиворечия, исключенного третьего, достаточного основания. Они действуют в любом рассуждении, в какой бы логической форме оно ни протекало и какую бы логическую операцию ни выполняло. Наряду с основными логика изучает законы двойного отрицания, контрапозиции, де Моргана и т.д., которые также действуют в мышлении, обусловливая правильную связь мыслей в процессе рассуждения.

      1) Закон тождества. Любая мысль в процессе рассуждения должна иметь определенное, устойчивое содержание. Это коренное свойство мышления – его определенность – выражает закон тождества: всякая мысль в процессе рассуждения должна быть тождественна самой себе (А есть А, или А = А, где А – любая мысль). Нельзя отождествлять различные мысли, нельзя тождественные мысли принимать за нетождественные. Нарушение этого требования в процессе рассуждения часто бывает связано с различным выражением одной и той же мысли в языке. С другой стороны, употребление многозначных слов может привести к ошибочному отождествлению различных мыслей. Отождествление различных мыслей часто связано с различиями в профессии, образовании и др. Отождествление различных понятий представляет собой логическую ошибку – подмену понятий, которая может быть как неосознанной, так и преднамеренной.

      2) Закон непротиворечия. Логическое мышление характеризуется непротиворечивостью. Противоречия разрушают мысль, затрудняют процесс познания. Требование непротиворечивости мышления выражает формально-логический закон непротиворечия: два несовместимых друг с другом суждения не могут быть одновременно истинными; по крайней мере одно из них необходимо ложно. Данный закон формулируется следующим образом: неверно, что А и не-А (не могут быть истинными две мысли, одна из которых отрицает другую). Закон непротиворечия действует в отношении всех несовместимых суждений.

      3) Закон исключенного третьего. Данный закон действует только в отношении противоречащих (контрадикторных) суждений. Он формулируется следующим образом: два противоречащих суждения не могут одновременно быть ложными, одно из них необходимо истинно: А есть либо В, либо не-В. Истинно либо утверждение некоторого факта, либо его отрицание. Противоречащие суждения – это суждения, в одном из которых что-либо утверждается (или отрицается) о каждом предмете некоторого множества, а в другом – отрицается (утверждается) о некоторой части этого множества. Эти суждения не могут быть одновременно ни истинными, ни ложными: если одно из них истинно, то другое ложно и наоборот. Противоречащими являются также два суждения об одном предмете, в одном из которых что-либо утверждается, а в другом то же самое отрицается.

      4) Закон достаточного основания. Требование доказанности, обоснованности мысли выражает данный закон: всякая мысль признается истинной, если она имеет достаточное основание. Если есть В, то есть и его основание А. Достаточным основанием мыслей может быть личный опыт человека. Истинность некоторых суждений подтверждается путем их непосредственного сопоставления с фактами действительности. Истинность законов, аксиом подтверждена практикой человечества и не нуждается поэтому в новом подтверждении. Для подтверждения какого-либо частного случая нет необходимости обосновывать его при помощи личного опыта. Достаточным основанием какой-либо мысли может быть любая другая, уже проверенная и установленная мысль, из которой с необходимостью вытекает истинность данной.

      www.tamognia.ru

      4 закона логики

      В поле зрения логики как науки о познавательной деятельности пребывают не только формы мышления, но и отношения, возникающие между ними в мыслительном процессе. Дело в том, что не каждая совокупность понятий, суждений, умозаключений дает возможность построить эффективное размышление. Для него обязательными атрибутами являются последовательность, непротиворечивость, обоснованная связь. Эти аспекты, необходимые для эффективных размышлений, призваны обеспечить логические законы.

      В тренинге логического мышления на нашем сайте, мы даем короткую характеристику основным логическим законам. В этой статье рассмотрим 4 закона логики более детально, с примерами, ведь, как справедливо отметил автор учебника по логике Никифоров А. Л.: «Попытка нарушить закон природы способна убить вас, но точно так же попытка нарушить закон логики убивает в вас разум».

      Логические законы

      Чтобы избежать искаженного представления о предмете статьи, укажем, что, говоря об основных законах логики, мы имеем в виду законы формальной логики (тождества, непротиворечия, исключенного третьего, достаточного основания), а не логики предикатов.

      Логический закон – внутренняя существенная, необходимая связь между логическими формами в процессе построения размышления. Под логическим законом Аристотель, который, к слову, первым сформулировал три из четырех законов формальной логики, подразумевал предпосылку к объективной, «природной» правильности рассуждения.

      Многие учебные материалы часто предлагают следующие формулы для записи основных законов логики:

      • Закон тождества – А = А, или А ⊃ А;
      • Закон непротиворечия – A ∧ A;
      • Закон исключенного третьего – A ∨ A;
      • Закон достаточного основания – А ⊃ В.
      • Стоит помнить, что такое обозначение во многом условно и, как отмечают ученые, не всегда в полной мере способны раскрыть суть самих законов.

        1. Закон тождества

        Аристотель в своей «Метафизике» указывал на тот факт, что размышление невозможно «если не мыслить каждый раз что-нибудь одно». Большинство современных учебных материалов закон тождества формулирует так: «Любое высказывание (мысль, понятие, суждение) на протяжении всего рассуждения должно сохранять один и тот же смысл».

        Отсюда следует важное требование: запрещается тождественные мысли принимать за различные, а различные – за тождественные. Поскольку естественный язык позволяет выражать одну и ту же мысль через различные языковые формы, то это может стать причиной подмены исходного смысла понятий и к замене одной мысли другой.

        Чтобы подтвердить закон тождества Аристотель обратился к анализу софизмов – ложных высказываний, которые при поверхностном рассмотрении кажутся правильными. Наиболее известные софизмы, наверное, слышал каждый. Например: «Полупустое есть то же, что и наполовину полное. Если равны половины, значит, равны и целые. Следовательно, пустое есть то же, что и полное» или «6 и 3 есть четное и нечетное. 6 и 3 есть девять. Следовательно, 9 есть и четное, и нечетное».

        Внешне форма рассуждения правильная, но при анализе хода рассуждения обнаруживается ошибка, связанная с нарушением закона тождества. Так, во втором примере всем понятно, что число 9 не может быть одновременно и четным, и нечетным. Ошибка в том, что союз «и» в условии употребляется в разных значениях: в первом как объединение, одновременная характеристика чисел 6 и 3, а во втором – как арифметическое действие сложения. Отсюда и ошибочность вывода, ведь в процессе рассуждения к предмету были применены разные смыслы. По сути, закон тождества – требование в определенности и неизменности мыслей в процессе рассуждения.

        Извлекая будничный смысл из вышесказанного остановимся на понимании того, к чему относится закон тождества. В соответствии с ним всегда стоит помнить, что прежде чем приступить к обсуждению любого вопроса, нужно четко определить его содержание и неизменно ему следовать, не смешивая понятий и избегая двусмысленностей.

        Закон тождества не предполагает что вещи, явления и понятия неизменны в некоторых моментах, он основывается на том, что мысль, зафиксированная в определенном языковом выражении, несмотря на все возможные преобразования, должна оставаться тождественной сама себе в пределах конкретного соображения.

        2. Закон непротиворечия (противоречия)

        Формально-логический закон непротиворечия основывается на доводе, что два несовместимых друг с другом суждения не могут быть одновременно истинными; как минимум одно из них ложно. Оно вытекает из понимания содержания закона тождества: в одно время, в одном отношении истинными не могут быть два суждения о предмете, если одно из них что-нибудь утверждает о нем, а второе это же отрицает.

        Сам Аристотель писал: «Невозможно, чтобы одно и то же одновременно было и не было присуще одному и тому же, в одном и том же смысле».

        Разберемся с этим законом на конкретном примере – рассмотрим следующие суждения:

      • Каждый посетитель сайта 4brain имеет высшее образование.
      • Ни один посетитель сайта 4brain не имеет высшего образования.
      • Для того, чтобы определить какое высказывание истинно, обратимся к логике. Можем утверждать, что одновременно оба высказывания быть правдивыми не могут, поскольку являются противоречивыми. Из этого следует, что если доказать истинность одного из них, то второе обязательно будет ошибочным. Если же доказать ошибочность одного, то второе может быть как истинным, так и неправдивым. Чтобы узнать правду, исходные данные достаточно проверить, например, с помощью метрики.

        По сути, этот закон запрещает утверждать и отрицать одно и то же одновременно. Внешне закон противоречия может показаться очевидным и вызвать справедливое сомнение по поводу целесообразности выделения столь простого вывода в логический закон. Но здесь есть свои нюансы и связаны они с природой самих противоречий. Так, контактные противоречия (когда что-либо утверждается и отрицается почти в одно и то же время, например, уже следующим предложением в речи) более чем очевидны и практически не встречаются. В отличие от первой разновидности, дистантные противоречия (когда между противоречивыми суждениями находится значительный интервал в речи или тексте) – более распространенные и их нужно избегать.

        Чтобы эффективно использовать закон противоречия достаточно правильно учитывать условия его употребления. Основным требованием является соблюдение в высказываемой мысли единства времени и отношения между предметами. Другими словами, нарушением закона непротиворечия не может считаться утвердительное и отрицательное суждения, которые относятся к разному времени или употребляются в разных отношениях. Приведем примеры. Так, высказывания «Москва – столица» и «Москва – не столица» могут быть одновременно правильными, если мы говорим в первом случае о современности, а во втором – об эпохе Петра I, который, как известно, перенес столицу в Санкт-Петербург.

        В плане разности отношений истинность противоречивых суждений можно передать на таком примере: «Моя подруга хорошо владеет испанским языком» и «Моя подруга плохо владеет испанским языком». Оба утверждения могут быть истинны, если в момент речи в первом случае говорится об успехах в изучении языка по университетской программе, а во втором о возможности работы профессиональным переводчиком.

        Таким образом, закон противоречия фиксирует отношения между противоположными суждениями (логическими противоречиями) и никаким образом не касается противоположных сторон одной сущности. Его знание необходимо для дисциплины процесса мышления и исключения возможных неточностей, которые возникают в случае нарушения.

        3. Закон исключенного третьего

        Намного «знаменитей», чем предыдущие два закона Аристотеля, в широких кругах, благодаря значительной распространенности сентенции «tertium non datur», что в переводе значит «третьего не дано» и отображает суть закона. Закон исключенного третьего – требование к мыслительному процессу, согласно с которым если в одном из двух выражений что-либо о предмете утверждается, а во втором отрицается – одно из них обязательно истинно.

        Аристотель в Книге 3 «Метафизики» писал: «…ничего не может быть посредине между двумя противоречивыми суждениями об одном, каждый отдельный предикат необходимо либо утверждать, либо отрицать». Древнегреческий мудрец отмечал, что закон исключенного третьего применим лишь в случае высказываний, употребленных в прошедшем или настоящем времени и не работает с будущим временем, ведь нельзя сказать с достаточной долей уверенности произойдет или не произойдет что-либо.

        Очевидно, что закон непротиворечия и закон исключенного третьего тесно связаны. Действительно, те суждения, которые подходят под действие закона исключенного третьего, подходят и под закон непротиворечия, но не все суждения последнего, попадают под действие первого.

        Закон исключенного третьего применим к таким формам суждений:

        Одно суждение утверждает что-либо о предмете в одном и том же отношении в одно время, а второе – то же самое отрицает. Например: «Страусы – птицы» и «Страусы – не птицы».

      • «Все А есть В», «Некоторые А не есть В».
      • Одно суждение утверждает что-либо относительно всего класса предметов, второе – отрицает это же, но относительно лишь некоторой части предметов. Например: «Все учащиеся группы ИН-14 сдали сессию на отлично» и «Некоторые учащиеся группы ИН-14 не сдали сессию на отлично».

      • «Ни одно А не есть В», «Некоторые А есть В».
      • Одно суждение отрицает характеристику класса предметов, а второе эту же характеристику утверждает в отношении некоторой части предметов. Пример: «Ни один житель нашего дома не пользуется Интернетом» и «Некоторые жители нашего дома пользуются Интернетом».

        Позже, начиная с эпохи Нового времени, закон был раскритикован. Известная формулировка, применявшаяся для этого: «Насколько верно утверждать, что все лебеди черные, исходя из того, что нам до сих пор встречались только черные?». Дело в том, что закон применим лишь в аристотелевской двузначной логике, которая основывается на абстракции. Поскольку ряд элементов бесконечен, проверить все альтернативы в подобного рода суждениях очень сложно, здесь требуется применение других логических принципов.

        4. Закон достаточного основания

        Четвертый из основных законов формальной или классической логики был сформулирован по прошествии значительного периода времени после обоснования Аристотелем первых трех. Его автор – видный немецкий ученый (философ, логик, математик, историк; этот список занятий можно продолжить) – Готфрид Вильгельм Лейбниц. В своей работе о простых субстанциях («Монадология», 1714 г.) он писал: «…ни одно явление не может оказаться истинным или действительным, ни одно утверждение справедливым, – без достаточного основания, почему именно дело обстоит так, а не иначе, хотя эти основания в большинстве случаев вовсе не могут быть нам известны».

        Современное определение закона Лейбница основано на понимании, что всякое положение для того, чтобы считаться вполне достоверным, должно быть доказанным; должны быть известны достаточные основания, в силу которых оно считается истинным.

        Функциональное предназначение данного закона выражается в требовании соблюдать в мышлении такую черту, как обоснованность. Г. В. Лейбниц, по сути, объединил законы Аристотеля с их условиями определенности, последовательности и непротиворечивости рассуждения, и на основании этого разработал понятие о достаточном основании для того, чтоб характер размышления был логичным. Немецкий логик хотел этим законом показать, что в познавательной или практической деятельности человека рано или поздно наступает момент, когда недостаточно иметь просто истинное утверждение, нужно чтобы оно было обоснованным.

        При детальном анализе оказывается, что закон достаточного основания мы применяем в повседневной жизни довольно часто. Делать выводы, основываясь на фактах – значит применять этот закон. Школьник, указывающий в конце реферата список использованной литературы и студент, оформляющий ссылки на источники в курсовой работе – этим они подкрепляют свои выводы и положения, следовательно, используют закон достаточного основания. С тем же самым люди разных профессий сталкиваются в процессе своей работы: доцент – при поиске материала для научной статьи, спичрайтер – при написании речи, прокурор – во время подготовки обвинительного выступления.

        Нарушение закона достаточного основания также широко распространено. Иногда причиной тому неграмотность, иногда – специальные уловки с целью получения выгоды (например, построение аргументации с нарушением закона для победы в споре). Как пример, высказывания: «Этот человек не болеет, у него ведь нет кашля» или «Гражданин Иванов не мог совершить преступление, ведь он прекрасный работник, заботливый отец и хороший семьянин». В обоих случаях ясно, что приводимые аргументы в недостаточной мере обосновывают тезис, а, значит, являются прямым нарушением одного из основных законов логики – закона достаточного основания.

        Интересуетесь развитием логического мышления и мышления глобально? Обратите внимание на курс «Когнитивистика»».

        Отзывы и комментарии

        Поделиться своими знаниями в области законов классической логики, порекомендовать литературу для детального ознакомления с ними, а также обсудить данную статью вы можете путем добавления комментария в специальное поле ниже.

        4brain.ru